Алессандро Вольта и Луиджи Гальвани: неоконченный спор. Аллесандро Вольта и первый электрохимический генератор (Вольтов столб) Как можно объяснить результаты опыта вольта




Гальванический элемент – это источник электрической энергии, принцип действия основан на химических реакциях. Большинство современных батареек и аккумуляторов подпадает под определение и относится к рассматриваемой категории. Физически гальванический элемент состоит из проводящих электродов, погруженных в одну или две жидкости (электролиты).

Общая информация

Гальванические элементы делятся на первичные и вторичные в соответствии со способностью вырабатывать электрический ток. Оба вида считаются источниками и служат для различных целей. Первые вырабатывают ток в ходе химической реакции, вторые функционируют исключительно после зарядки. Ниже обсудим обе разновидности. По количеству жидкостей различают две группы гальванических элементов:

Непостоянство источников питания с единственной жидкостью заметил Ом, открыв неприемлемость гальванического элемента Волластона для экспериментов по исследованию электричества. Динамика процесса такова, что в начальный момент времени ток велик и вначале растёт, потом за несколько часов падает до среднего значения. Современные аккумуляторы капризны.

История открытия химического электричества

Мало известен факт, что в 1752 году гальваническое электричество упоминалось Иоганном Георгом. Издание Исследование происхождения приятных и неприятных ощущений, выпущенное Берлинской академией наук, даже придавало явлению вполне правильное толкование. Опыт: серебряную и свинцовую пластины соединяли с одного конца, а противоположные с разных сторон прикладывались к языку. На рецепторах наблюдается вкус железного купороса. Читатели уже догадались, описанный способ проверки батареек часто использовали в СССР.

Объяснение явления: видимо, имеются некие частицы металла, раздражающие рецепторы языка. Частицы испускаются одной пластиной при соприкосновении. Причём один металл при этом растворяется. Собственно, налицо принцип действия гальванического элемента, где цинковая пластина постепенно исчезает, отдавая энергию химических связей электрическому току. Объяснение сделано за полвека до официального доклада Королевскому обществу Лондона Алессандро Вольта об открытии первого источника питания. Но, как происходит часто с открытиями, к примеру, электромагнитным взаимодействием, опыт остался незамечен широкой научной общественностью и не исследован должным образом.

Добавим, это оказалось связано с недавней отменой преследования за колдовство: немногие решались после печального опыта «ведьм» на изучение непонятных явлений. Иначе обстояло дело с Луиджи Гальвани, с 1775 года работающим на кафедре анатомии в Болонье. Его специализаций считались раздражители нервной системы, но светило оставил значимый след не в области физиологии. Ученик Беккарии активно занимался электричеством. Во второй половине 1780 года, как следует из воспоминаний учёного (1791, De Viribus Electricitatis in Motu Muscylary: Commentarii Bononiensi, том 7, стр. 363), в очередной раз производилось препарирование лягушки (опыты и потом длились долгие годы).

Примечательно, что необычное явление подмечено ассистентом, в точности, как с отклонением стрелки компаса проводом с электрическим током: открытие сделали лишь косвенно связанные с научными исследованиями люди. Наблюдение касалось подергиваний нижних конечностей лягушки. В ходе опыта ассистент задел внутренний бедренный нерв препарируемого животного, ножки дёрнулись. Рядом, на столе стоял электростатический генератор, на приборе проскочила искра. Луиджи Гальвани немедленно загорелся идеей повторить опыт. Что удалось. И опять на машине проскочила искра.

Образовалась параллель связи с электричеством, и Гальвани возжелал узнать, станет ли на лягушку действовать подобным образом гроза. Оказалось, что природные катаклизмы не оказывают заметного воздействия. Лягушки, прикреплённые медными крючками за спинной мозг к железной ограде, дёргались вне зависимости от погодных условий. Опыты не удавалось реализовать со 100-процентной повторяемостью, атмосфера воздействия не оказывала. В итоге Гальвани нашёл сонм пар, составленных из разных металлов, которые при соприкосновении между собой и нервом вызывали подёргивание лапок у лягушки. Сегодня явление объясняют различной степенью электроотрицательности материалов. К примеру, известно, что нельзя алюминиевые пластины клепать медью, металлы составляют гальваническую пару с ярко выраженными свойствами.

Гальвани справедливо заметил, что образуется замкнутая электрическая цепь, предположил, что лягушка содержит животное электричество, разряжаемое подобно лейденской банке. Алессандро Вольта не принял объяснения. Внимательно изучив описание экспериментов, Вольта выдвинул объяснение, что ток возникает при объединении двух металлов, непосредственно или через электролит тела биологического существа. Причина возникновения тока кроется в материалах, а лягушка служит простым индикатором явления. Цитата Вольты из письма, адресованного редактору научного журнала:

Проводники первого рода (твёрдые тела) и второго рода (жидкости) при соприкосновении в некоторой комбинации рождают импульс электричества, сегодня нельзя объяснить причины возникновения явления. Ток течёт по замкнутому контуру и исчезает, если целостность цепи нарушена.

Вольтов столб

Лепту в череду открытий внёс Джованни Фаброни, сообщивший, что при размещении двух пластинок гальванической пары в воду, одна начинает разрушаться. Следовательно, явление имеет отношение к химическим процессам. А Вольта тем временем изобрёл первый источник питания, долгое время служивший для исследования электричества. Учёный постоянно искал способы усиления действия гальванических пар, но не находил. В ходе опытов создана конструкция вольтова столба:

  1. Попарно брались цинковые и медные кружки в плотном соприкосновении друг с другом.
  2. Полученные пары разделялись мокрыми кружками картона и ставились друг над другом.

Легко догадаться, получилось последовательное соединение источников тока, которые суммируясь, усиливали эффект (разность потенциалов). Новый прибор вызывал при прикосновении ощутимый для руки человека удар. Подобно опытам Мушенбрука с лейденской банкой. Однако для повторения эффекта требовалось время. Стало очевидно, что источник энергии имеет химическое происхождение и постепенно возобновляется. Но привыкнуть к понятию нового электричества оказалось непросто. Вольтов столб вёл себя подобно заряженной лейденской банке, но…

Вольта организует дополнительный эксперимент. Снабжает каждый из кружков изолирующей ручкой, приводит в соприкосновение на некоторое время, потом размыкает и проводит исследование электроскопом. К тому времени уже стал известен закон Кулона, выясняется, что цинк зарядился положительно, а медь – отрицательно. Первый материал отдал электроны второму. По указанной причине цинковая пластина вольтова столба постепенно разрушается. Для изучение работы назначили комиссию, которой представили доводы Алессандро. Уже тогда путём умозаключений исследователь установил, что напряжение отдельных пар складывается.

Вольта объяснил, что без мокрых кружков, прокладываемых между металлами, конструкция ведёт себя как две пластинки: медная и цинковая. Усиления не происходит. Вольта нашёл первый ряд электроотрицательности: цинк, свинец, олово, железо, медь, серебро. И если исключить промежуточные металлы между крайними, «движущая сила» не изменяется. Вольта установил, что электричество существует, пока соприкасаются пластины: сила не видна, но легко чувствуется, следовательно, она истинна. Учёный 20 марта 1800 года пишет президенту Королевского общества Лондона сэру Джозефу Бэнксу, к которому обращался впервые и Майкл Фарадей.

Английские исследователи быстро обнаружили: если на верхнюю пластину (медь) капнуть воды, в указанной точке в районе контакта выделяется газ. Они проделали опыт с обоих сторон: провода подходящей цепи заключили в колбы с водой. Газ исследовали. Оказалось, что газ горючий, выделяется лишь с единственной стороны. С противоположной заметно окислилась проволока. Установлено, что первое является водородом, а второе явление происходит вследствие избытка кислорода. Установлено (2 мая 1800 года), что наблюдаемый процесс — разложение воды под действием электрического тока.

Уильям Крукшенк немедленно показал, что аналогичное допустимо проделать с растворами солей металлов, а Волластон окончательно доказал идентичность вольтова столба статическому электричеству. Как выразился учёный: действие слабее, но обладает большей продолжительностью. Мартин Ван Марум и Христиан Генрих Пфафф зарядили от элемента лейденскую банку. А профессор Хампфри Дэви установил, что чистая вода не может служить в этом случае электролитом. Напротив, чем сильнее жидкость способна окислять цинк, тем лучше действует вольтов столб, что вполне согласовывалось с наблюдениями Фаброни.

Кислота намного улучшает работоспособность, ускоряя процесс выработки электричества. В конце концов Дэви создал стройную теорию вольтова столба. Он пояснил, что металлы изначально обладают неким зарядом, при замыкании контактов вызывающим действие элемента. Если электролит способен окислять поверхность донора электронов, слой истощённых атомов постепенно удаляется, открывая новые слои, способные давать электричество.

В 1803 году Риттер собрал столб из чередующихся кружков серебра и мокрого сукна, прообраз первого аккумулятора. Риттер зарядил его от вольтова столба и наблюдал процесс разрядки. Правильное толкование явлению дал Алессандро Вольта. И лишь в 1825 году Огюст де ла Рив доказал, что перенос электричества в растворе осуществляется ионами вещества, наблюдая образование оксида цинка в камере с чистой водой, отделённой от соседней мембраной. Заявление помогло Берцелиусу создать физическую модель, в которой атому электролита представлялись составленными из двух противоположно заряженных полюсов (ионов), способных диссоциировать. В результате получилась стройная картина переноса электричества на расстояние.

Провозвестник эпохи электротехники Алессандро Вольта

К 200-летию первого источника электрического тока

Ян Шнейберг, Д. Шарле

Алессандро Вольта был, как теперь принято говорить, знаковой фигурой в истории электричества, электротехники, электросвязи.

К последней четверти XVIII века многое уже было известно о свойствах таинственной "электрической силы". Конструировались электростатические машины трения для получения электрических зарядов (Фрэнсис Гауксби, Англия), было открыто явление электропроводности (Стефен Грей, Англия) и дано понятие о двух видах электричества - "стеклянном" и "смоляном" - впоследствии "положительном" и "отрицательном" (Шарль Дюфе, Франция). Был создан накопитель электрических зарядов - первый конденсатор, так называемая "лейденская банка" (Эвальд Клейст, Померания, и Питер ван Мюссенбрук, Голландия), "укрощена" молния (Б. Франклин, США) применением молниеотвода (в бытовой лексике "громоотвод"). Наконец, установлен Первый закон электростатики (Шарль Кулон, Франция).

Но эпохальное открытие Вольты - "контактного электричества" - как бы подвело итог всем достигнутым ранее результатам и дало мощный импульс новым, более глубоким исследованиям природы электричества и возможности его практического применения.

Алессандро Вольта родился 18 февраля 1745 г. в родовом имении предков, близ небольшого городка Комо на севере Италии. Он выходец из аристократической семьи, его матерью была герцогиня Маддалена Инзаи. В самые ранние годы Алессандро страдал замедленным физическим и умственным развитием, говорить он начал только в четыре года. Затем его развитие пошло очень быстро. Вопреки уготованной ему карьере священнослужителя он увлекся физическими опытами и уже в 18 лет вел переписку с одним из наиболее видных физиков-электриков того времени, демонстратором эффектных публичных электрических опытов аббатом Жаном Нолле.

Алессандро Вольта

С 1774 по 1779 гг. Вольта - преподаватель физики в Королевском училище в Комо. В 26-летнем возрасте выпускает первый научный труд "Эмпирические исследования способов возбуждения электричества и улучшения конструкции машины". Свое первое серьезное изобретение он сделал в 1772 г. Это был так называемый конденсаторный электроскоп с расходящимися соломинками (соединение электроскопа с конденсатором), обладавший гораздо большей чувствительностью, чем прежние электроскопы с подвешенными на нитях пробковыми или бузиновыми шариками. Прибор обладал метрическими свойствами, так как отклонение соломинок на угол до 30° оказалось пропорциональным заряду электроскопа. Электроскоп многие годы был основным измерительным прибором, которым пользовались сам Вольта и другие исследователи.

В тридцать лет Вольта стал знаменитым. Он изобрел смоляной электрофор, или, как назвал его сам изобретатель, "elettrophoro perpetuo", что значит "постоянный носитель электричества". В электрофорной машине использовалось явление электризации посредством индукции, в то время как в применявшихся электростатических машинах электричество получалось путем трения. Прибор исключительно прост и так же исключительно оригинален. Он состоит из двух металлических дисков. Один, допустим нижний, покрыт слоем смолы. При натирании его рукой, кожаной перчаткой или мехом диск заряжается отрицательным электричеством. Если поднести к нему верхний диск, последний зарядится так, как показано на рис. 1 а. При отведении несвязанного электричества в землю (рис. 1 б), хотя бы пальцем экспериментатора, верхний диск окажется заряженным положительно. Можно его поднять и снять с него заряд (рис. 1 в). Повторяя цикл опускания-подъема верхнего диска многократно, можно столь же многократно увеличивать заряд.

Рис. 1. Схема, объясняющая работу электрофора Вольты

Вольта указывал, что его электрофор "продолжает работать даже спустя три дня после зарядки". И далее: "Моя машина дает возможность получить электричество во всякую погоду и производит эффект более превосходный, чем лучшие дисковые и шаровые (электростатические - прим. авт.) машины". Итак, электрофор - прибор, позволяющий получать мощные разряды статического электричества. Вольта извлекал из него "искры в десять или двенадцать толщин пальцев и даже более... ". Электрофор Вольты послужил основой для сооружения целого класса индукционных, так называемых "электрофорных", машин.

Полемический комментарий. Некоторые историки физики и электротехники считают, что Вольта не изобрел электрофор, а лишь усовершенствовал прибор, изобретенный ранее петербургским академиком Францем Эпинусом. Действительно, Эпинус в 1758 г. предложил теорию передачи "электричества через влияние" - методом электростатической индукции, т. е., по современной терминологии, изобрел способ. Он же соорудил первое устройство, доказывающее такую возможность. Оно представляло собой металлическую чашу, в которую вставлялась сформованная масса наэлектризованной серы и затем вынималась из нее. И чаша, и сера оказывались электрически заряженными.

Однако Эпинус дальше лабораторной демонстрации не пошел, и изобретенное им устройство не получило практического применения. Вольта же на основе изобретенного Эпинусом способа изобрел оригинальный электрофор, дающий по сравнению с прототипом новый технический эффект, что по всем канонам патентного права признается изобретением. Подобное характерно для истории техники. Изобретенный единожды способ позволял на его принципе создавать, т. е. изобретать, различные устройства. Так, например, П. Шиллинг изобрел способ электромагнитного телеграфирования и первое устройство для его осуществления. Затем на этом же принципе Ч. Уитстон и У. Кук изобрели стрелочный телеграф, а Морзе - печатающий телеграф. Все они с полным правом считаются изобретателями.

Сам Вольта признавал, что Эпинус осуществил идею электрофора, но не сконструировал законченного прибора.

В 1776 г. Вольта изобрел газовый пистолет - "пистолет Вольты", в котором газ метан взрывался от электрической искры.

В 1779 г. Вольту пригласили занять кафедру физики в университете с тысячелетней историей в городе Павия, где он проработал 36 лет.

Прогрессивный и смелый профессор, он порывает с латинским языком и учит студентов по книгам, написанным на итальянском.

Вольта много путешествует: Брюссель, Амстердам, Париж, Лондон, Берлин. В каждом городе его приветствуют собрания ученых, отмечают почестями, вручают Золотые медали. Однако "звездный час" Вольты еще впереди, он настанет через два с лишним десятилетия. А пока на целых пятнадцать лет он отдаляется от исследований электричества, живет размеренной профессорской жизнью и занимается различными интересующими его вещами. В возрасте сорока с лишним лет Вольта женился на знатной Терезе Пеллегрине, которая родила ему трех сыновей.

И вот - сенсация! Профессору попадается на глаза только что вышедший трактат Гальвани "О силах электрических при мышечном движении". Интересна трансформация позиции Вольты. Вначале он воспринимает трактат скептически. Затем повторяет опыты Гальвани и уже 3 апреля 1792 г. пишет последнему: "... с тех пор, как я стал очевидцем и наблюдал эти чудеса, я, пожалуй, перешел от недоверия к фанатизму. "

Однако это состояние длилось недолго. 5 мая 1792 г. в своей университетской лекции он превозносит опыты Гальвани, но уже следующую лекцию - 14 мая проводит в полемическом плане, высказывая мысль, что лягушка скорее всего - только индикатор электричества, "электрометр, в десятки раз более чувствительный, чем даже самый чувствительный электрометр с золотыми листочками."

Вскоре острый взгляд физика подмечает то, что не привлекло внимания физиолога Гальвани: содрогание лапок лягушки наблюдается лишь тогда, когда ее касаются проволоками из двух различных металлов. Вольта предполагает, что мышцы не участвуют в создании электричества, а их сокращение - вторичный эффект, вызываемый возбуждением нерва. Для доказательства он ставит знаменитый опыт, в котором обнаруживается кисловатый привкус на языке при приложении к его кончику оловянной или свинцовой пластинки, а к середине языка или к щеке - серебряной или золотой монеты и соединении пластинки и монеты проволочкой. Аналогичный вкус мы ощущаем, лизнув одновременно два контакта батарейки. Кисловатый привкус переходит в "щелочной", т. е. отдающий горечью, если поменять на языке местами металлические предметы.

В июне 1792 г., всего через три месяца после того, как Вольта начал повторять опыты Гальвани, у него уже не оставалось никаких сомнений: "Таким образом, металлы - не только прекрасные проводники, но и двигатели электричества; они не только предоставляют легчайший путь прохождению электрического

флюида, ... но сами же вызывают такое же нарушение равновесия тем, что извлекают этот флюид и вводят его, подобно тому, как это происходит при натирании идиоэлектриков" (так называли во времена Вольты тела, электризующиеся при трении - прим. авт.) .

Так Вольта установил закон контактных напряжений: два разнородных металла вызывают "нарушение равновесия" (по-современному - создают разность потенциалов) между обоими, после чего предложил называть полученное таким путем электричество не "животным", а "металлическим". С этого начался его семилетний путь к подлинно великому творению.

Первая серия уникальных экспериментов по измерению контактной разности потенциалов (КРП) завершилась составлением известного "ряда Вольты", в котором элементы располагаются в следующей последовательности: цинк, оловянная фольга, свинец, олово, железо, бронза, медь, платина, золото, серебро, ртуть, графит (Вольта ошибочно отнес графит к металлам - прим. авт.) .

Каждый из них, придя в соприкосновение с любым из последующих членов ряда, получает положительный заряд, а этот последующий - отрицательный. Например, железо (+) / медь (-); цинк (+) / серебро (-) и т. п. Силу, возникающую при контакте двух металлов, Вольта назвал электровозбудительной, или электродвижущей силой. Эта сила перемещает электричество так, что получается разность напряжений между металлами. Далее Вольта установил, что разность напряжений будет тем больше, чем дальше расположены металлы один от другого. Например, железо/медь - 2, свинец/олово - 1, цинк/серебро - 12.

В 1796-1797 гг. был выявлен важный закон: разность потенциалов двух членов ряда равна сумме разностей потенциалов всех промежуточных членов:

А/В + В/С + C/D + D/E + E/F = A/F.

Действительно, 12 = 1 + 2 + 3 + 1 + 5.

Кроме того, опыты показали, что разности напряжений в "замкнутом ряду" не возникает: А/В + В/С + C/D + D/A = 0 . Это означало, что посредством нескольких чисто металлических контактов нельзя достичь больших напряжений, чем при непосредственном контакте только двух металлов.

С современной точки зрения теория контактного электричества, предложенная Вольтой, была ошибочной. Он рассчитывал на возможность непрерывного получения энергии в виде гальванического тока без затраты на это какого-либо другого вида энергии.

Все-таки в конце 1799 г. Вольте удается добиться желаемого. Сначала он установил, что при соприкосновении двух металлов один получает большее напряжение, чем другой. Например, при соединении медной и цинковой пластин медная имеет потенциал 1, а цинковая 12. Последующие многочисленные эксперименты привели Вольту к выводу, что непрерывный электрический ток может возникнуть лишь в замкнутой цепи, составленной из различных проводников - металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).

Таким образом, Вольта, сам того до конца не осознавая, пришел к созданию электрохимического элемента, действие которого основывалось на превращении химической энергии в электрическую.

Рис. 2. Виды гальванических элементов, изображенных Вольтой в письме к Бэнксу: вверху - чашечная батарея, внизу - варианты "вольтовых столбов".

Значительные напряжения Вольта смог получать, располагая столбиком кружки одинаковых контактных пар металлов, одинаково ориентированных и разделенных влажными прокладками из ткани. Суть этого сам Вольта проиллюстрировал на примере своей чашечной батареи (рис. 2 вверху). В левой чашке находится одна медная пластина, ее потенциал 1. В трех последующих чашках левые пластины - цинковые, правые - медные; в последней чашке - цинковая; каждая цинковая в одной чашке соединена металлической дужкой с медной в соседней чашке. Первая цинковая пластина имеет потенциал 12. Вольта допустил, что две металлические пластинки, разделенные жидкостью, приобретают одинаковые потенциалы. Следовательно, вторая медная будет иметь потенциал также 12, а вторая цинковая 12 + 11 =23; третья цинковая 12 + 2 * 11 = = 34; четвертая 12 + 3 * 11 = 45 и т. д. Например, 10-я цинковая приобретет потенциал 12 + 9 * 11 = 111.

О своем открытии Вольта сообщил в письме от 20 марта 1800 г. президенту Лондонского Королевского общества Джозефу Бэнксу. В сообщении "Об электричестве, возбуждаемом простым соприкосновением простых проводящих веществ" он пишет: "... Я... имею удовольствие сообщить о некоторых поразительных результатах, полученных мною. Главный из этих результатов... создание прибора, который действует непрерывно..., создает неуничтожаемый заряд, дает непрерывный импульс электрическому флюиду". И далее: "Снаряд, о котором я говорю, - и это удивит Вас - ... есть не что иное, как собрание хороших проводников разного рода, расположенных определенным образом. Двадцать, сорок или шестьдесят кружков меди или, еще лучше, серебра, сложенных каждый с кружком олова или лучше цинка, и такое же количество слоев воды или какой иной жидкости, лучше проводящей, чем вода, например, соляного раствора, щелока и т. п., или кусков картона, кожи и т. п. хорошо смоченных этими жидкостями, причем эти слои располагаются между обоими разнородными металлами каждой пары. Вот все, что составляет мой новый инструмент". Сам Вольта первоначально предлагал назвать свой прибор, или снаряд, или инструмент "искусственным электрическим органом", затем переименовал в "электродвижущую колонну". Позже французы стали называть этот прибор "гальваническим столбом", или "вольтовым столбом".

Вольте принадлежит введение понятий "емкость", "цепь", "электродвижущая сила", "разность напряжений".

К изобретателю пришли почет и слава. Во Франции в его честь чеканится медаль, а первый консул Директории генерал Бонапарт основывает фонд в 200000 франков для "гениальных первооткрывателей" в области электричества и первую премию вручает автору столба. Вольта становится рыцарем Почетного легиона, Железного креста, получает звание сенатора и графа, становится членом Парижской и Петербургской академий наук, членом Лондонского Королевского общества, которое награждает его Золотой медалью Коплея.

Создание "вольтова столба" было революционным событием в науке об электричестве, оно подготовило фундамент для зарождения современной электротехники и оказало огромное влияние на всю историю человеческой цивилизации. Неудивительно, что современник Вольты французский академик Д. Араго считал вольтов столб "... самым замечательным прибором, когда-либо созданным людьми, не исключая телескопа и паровой машины".

"Вольтов столб" в первую треть XIX века оставался единственным источником электрического тока, который успешно использовали для своих опытов и открытий крупнейшие ученые - В. Петров, X. Дэви, А.-М. Ампер, М. Фарадей.

Среди них первым, кто усовершенствовал "вольтов столб", был профессор физики петербургской Медико-хирургической академии Василий Петров. Он указал на то, что более интенсивный ток можно получить от более мощной батареи. В 1802 г. он создал уникальный источник тока высокого напряжения (около 1700 В), названный им "огромной наипаче батареей". Эта батарея состояла из 2100 медно-цинковых элементов (в существовавших тогда в Европе батареях было 15-20 элементов). В своем сочинении "Известие о гальвани-вольтовских опытах", изданном в 1803 г., В. Петров описал открытое им явление электрической дуги и указал, что ее "ярким светом, подобным солнечному или пламени, темный покой довольно ясно освещён быть может". Так было положено начало двум направлениям: электроплавке металлов и восстановлению их из руд и созданию дуговых электрических ламп.

Вольте посчастливилось дожить до важнейших открытий, сделанных с использованием его изобретения: это действие тока на магнитную стрелку, взаимное вращение проводников с током и магнитом (прообраз электродвигателя), разработка Ампером основ электродинамики. В 1819 г. Вольта оставил профессуру.

Он скончался в своем родном городе в 1827 г. в возрасте 82 лет.

Легенды о Вольте ходили еще при его жизни. В доказательство своей теории о "контактном электричестве" он в 1794 г. произвел опыт "Квартет мокрых". Четверо мужчин с мокрыми руками становились в круг. Затем первый правой рукой брал цинковую пластинку, а левой касался языка второго; второй касался глазного яблока третьего, который держал за лапки препарированную лягушку, а четвертый правой рукой охватывал ее тельце, а левой подносил серебряную пластинку к цинковой, которую держал правой рукой первый. В момент касания первый резко вздрагивал, второй морщился от "лимонного" вкуса во рту, у третьего сыпались искры из глаз, четвертый чувствовал неприятные ощущения, а лягушка будто оживала и трепетала. Это зрелище потрясало очевидцев.

Научный вклад Вольты был высоко оценен современниками - он считался самым великим физиком Италии после Галилея. На основе изобретения Вольты до конца XIX века было предложено около двухсот разновидностей "вольтова столба" - электрохимических источников тока.

Память о Вольте была увековечена в 1881 г. на Международном конгрессе электриков в Париже, где одной важнейших электрических единиц - единице напряжения было присвоено наименование "вольт".

Созданием "вольтова столба" завершилась эпоха электростатики и было положено начало эпохи электротехники.

Так на рубеже XVIII-XIX веков произошел переход от электричества для науки к электричеству для человечества - для промышленности, быта, культуры.

Литература

  1. Льоцци М. История физики. Пер. с итал. - М.: Мир, 1970.
  2. Лебедев В. Электричество, магнетизм и электротехника в их историческом развитии. - М.-Л.: Н.-т. изд-во НКТП СССР, 1937.
  3. Карцев В. Приключения великих уравнений. - М.: Знание, 1978.
  4. Дорфман Я. Г. Всемирная история физики с древнейших времен до конца XVIII века. - М.: Наука, 1974.
  5. Самарин М. С. Вольт, Ампер, Ом и другие единицы физических величин в технике связи. - М.: Радио и связь, 1988.
  6. Розенберг Ф. История физики. Ч. III, вып. I. - М.-Л.: Н.-т. изд-во НКТП СССР, 1935.
  7. Веселовский О. Н., Шнейберг Я. А. Очерки по истории электротехники. - М.: Изд-во МЭИ, 1993.
  8. Dictionary of scientific biography. Vol. 14, 1976.

Вольта указывал, что его электрофор "продолжает работать даже спустя три дня после зарядки". И далее: "Моя машина дает возможность получить электричество во всякую погоду и производит эффект более превосходный, чем лучшие дисковые и шаровые (электростатические - прим. авт.) машины". Итак, электрофор - прибор, позволяющий получать мощные разряды статического электричества. Вольта извлекал из него "искры в десять или двенадцать толщин пальцев и даже более... ".

Электрофор Вольты послужил основой для сооружения целого класса индукционных, так называемых "электрофорных", машин.

В 1776 г. Вольта изобрел газовый пистолет - "пистолет Вольты", в котором газ метан взрывался от электрической искры.

В 1779 г. Вольту пригласили занять кафедру физики в университете с тысячелетней историей в городе Павия, где он проработал 36 лет.

Прогрессивный и смелый профессор, он порывает с латинским языком и учит студентов по книгам, написанным на итальянском.

Вольта много путешествует: Брюссель, Амстердам, Париж, Лондон, Берлин. В каждом городе его приветствуют собрания ученых, отмечают почестями, вручают Золотые медали. Однако "звездный час" Вольты еще впереди, он настанет через два с лишним десятилетия. А пока на целых пятнадцать лет он отдаляется от исследований электричества, живет размеренной профессорской жизнью и занимается различными интересующими его вещами. В возрасте сорока с лишним лет Вольта женился на знатной Терезе Пеллегрине, которая родила ему трех сыновей.

И вот - сенсация! Профессору попадается на глаза только что вышедший трактат Гальвани "О силах электрических при мышечном движении". Интересна трансформация позиции Вольты. Вначале он воспринимает трактат скептически. Затем повторяет опыты Гальвани и уже 3 апреля 1792 г. пишет последнему: "... с тех пор, как я стал очевидцем и наблюдал эти чудеса, я, пожалуй, перешел от недоверия к фанатизму. "

Однако это состояние длилось недолго. 5 мая 1792 г. в своей университетской лекции он превозносит опыты Гальвани, но уже следующую лекцию - 14 мая проводит в полемическом плане, высказывая мысль, что лягушка скорее всего - только индикатор электричества, "электрометр, в десятки раз более чувствительный, чем даже самый чувствительный электрометр с золотыми листочками."

Вскоре острый взгляд физика подмечает то, что не привлекло внимания физиолога Гальвани: содрогание лапок лягушки наблюдается лишь тогда, когда ее касаются проволоками из двух различных металлов. Вольта предполагает, что мышцы не участвуют в создании электричества, а их сокращение - вторичный эффект, вызываемый возбуждением нерва. Для доказательства он ставит знаменитый опыт, в котором обнаруживается кисловатый привкус на языке при приложении к его кончику оловянной или свинцовой пластинки, а к середине языка или к щеке - серебряной или золотой монеты и соединении пластинки и монеты проволочкой. Аналогичный вкус мы ощущаем, лизнув одновременно два контакта батарейки. Кисловатый привкус переходит в "щелочной", т. е. отдающий горечью, если поменять на языке местами металлические предметы.

В июне 1792 г., всего через три месяца после того, как Вольта начал повторять опыты Гальвани, у него уже не оставалось никаких сомнений: "Таким образом, металлы - не только прекрасные проводники, но и двигатели электричества; они не только предоставляют легчайший путь прохождению электрического

флюида, ... но сами же вызывают такое же нарушение равновесия тем, что извлекают этот флюид и вводят его, подобно тому, как это происходит при натирании идиоэлектриков" (так называли во времена Вольты тела, электризующиеся при трении - прим. авт.) .

Так Вольта установил закон контактных напряжений: два разнородных металла вызывают "нарушение равновесия" (по-современному - создают разность потенциалов) между обоими, после чего предложил называть полученное таким путем электричество не "животным", а "металлическим". С этого начался его семилетний путь к подлинно великому творению.

Первая серия уникальных экспериментов по измерению контактной разности потенциалов (КРП) завершилась составлением известного "ряда Вольты", в котором элементы располагаются в следующей последовательности: цинк, оловянная фольга, свинец, олово, железо, бронза, медь, платина, золото, серебро, ртуть, графит (Вольта ошибочно отнес графит к металлам - прим. авт.) .

Каждый из них, придя в соприкосновение с любым из последующих членов ряда, получает положительный заряд, а этот последующий - отрицательный. Например, железо (+) / медь (-); цинк (+) / серебро (-) и т. п. Силу, возникающую при контакте двух металлов, Вольта назвал электровозбудительной, или электродвижущей силой. Эта сила перемещает электричество так, что получается разность напряжений между металлами. Далее Вольта установил, что разность напряжений будет тем больше, чем дальше расположены металлы один от другого. Например, железо/медь - 2, свинец/олово - 1, цинк/серебро - 12.

В 1796-1797 гг. был выявлен важный закон: разность потенциалов двух членов ряда равна сумме разностей потенциалов всех промежуточных членов:

А/В + В/С + C/D + D/E + E/F = A/F.

Действительно, 12 = 1 + 2 + 3 + 1 + 5.

Кроме того, опыты показали, что разности напряжений в "замкнутом ряду" не возникает: А/В + В/С + C/D + D/A = 0 . Это означало, что посредством нескольких чисто металлических контактов нельзя достичь больших напряжений, чем при непосредственном контакте только двух металлов.

С современной точки зрения теория контактного электричества, предложенная Вольтой, была ошибочной. Он рассчитывал на возможность непрерывного получения энергии в виде гальванического тока без затраты на это какого-либо другого вида энергии.

Все-таки в конце 1799 г. Вольте удается добиться желаемого. Сначала он установил, что при соприкосновении двух металлов один получает большее напряжение, чем другой. Например, при соединении медной и цинковой пластин медная имеет потенциал 1, а цинковая 12. Последующие многочисленные эксперименты привели Вольту к выводу, что непрерывный электрический ток может возникнуть лишь в замкнутой цепи, составленной из различных проводников - металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).

Таким образом, Вольта, сам того до конца не осознавая, пришел к созданию электрохимического элемента, действие которого основывалось на превращении химической энергии в электрическую.

Луиджи Гальвани (1737-1798) итальянский учёный, закончил медицинский факультет Болонского университета и стал его преподавателем, а позже профессором, и с 1780 г изучал нервы и мышцы животных.
Ещё до опытов Гальвани было известно, что мышцы лягушки сокращаются (дёргаются) при пропускании через них электрического заряда. В середине 18 века многие увлекались опытами с электричеством, и Гальвани не был исключением. На его столе стояла электрическая машина, при вращении рукоятки которой можно было заряжать различные предметы и получать большие электрические искры. Выполняя свои опыты, Гальвани заметил, что мышцы лягушки сокращаются, если при этом проскакивают искры электрической машины. Его удивило, что мышцы сокращались тогда, когда они не касались машины. Значит, электричество может распространяться по воздуху? И в 1786 году Гальвани начал серию опытов, решив изучить действие на мышцы лягушки атмосферного электричества, которое образуется в грозовую погоду.

Он подвесил лапки лягушки к железной решётке балкона своего дома, используя медные крючки. Но мышцы не сокращались ни при ясной погоде, ни при грозе. А сократились они, когда при порыве ветра лапки коснулись железной решётки балкона. Это вновь удивило Гальвани и, как упорный учёный, он вернулся в лабораторию. Он положил лягушачьи лапки на железную пластинку и, прижав к пластине и лапкам медные крючки, наблюдал сокращение мышц. Гальвани провёл опыты с различными металлами. Сокращения были в одних случаях сильнее, в других - слабее.
Результаты экспериментов Гальвани опубликовал в 1791 году в «Трактате о силах электричества при мышечном движении». В нём он писал: «Если держать висящую лягушку пальцами за одну лапку так, чтобы медный крючок, проходящий через спинной мозг, касался серебряной пластинки, а другая лапка свободно могла касаться той же пластинки, то как только лапка касается указанной пластинки, мышцы начинают сокращаться». Гальвани заключил, что электрические заряды вырабатываются вследствие каких-то жизненных процессов в лапке лягушки, поскольку в то время учёные-физики (в том числе Гальвани) считали, что металлы могут быть только проводниками и не могут создавать электрический ток.

В данном выводе усомнился итальянский профессор Павийского университета Алессандро Вольта (1745-1827). Он провёл серию опытов, пробуя различные сочетания металлов, и пришёл к заключению, что контакт двух разных металлов, соприкасающихся с жидкостью в мышцах лягушки, является источником электричества. На него и реагирует лягушачья лапка. Вольта утверждал, что причиной сокращения мышц служит не «животное электричество», а наличие именно двух различных металлов (например, меди и железа или цинка и серебра и др.) А влажная лапка лягушки служит проводником и чувствительным электрометром.

Для доказательства своей правоты Вольта использовал два разнородных металла, положив их на язык. Роль электропроводящей жидкости играла слюна языка, но сокращения мышц языка не было - Вольта лишь чувствовал «электрическое пощипывание» на поверхности языка, где он касался металлов. Важно, что пощипывание отсутствовало, если два металла были одинаковыми! Тем самым Вольта доказал, что не мышца, а именно два разных металла являются возбудителями электричества.
Доводы Вольты разрушали надежды Гальвани на создание нового «электрического» направления в медицине. Поэтому он направляет все усилия на то, чтобы доказать свою правоту. Он проводит серию опытов, в которых не использует металлы, а лишь стеклянные палочки, и находит, что между нормальным и повреждённым участками нерва любых животных течёт электрический ток. Так Гальвани открыл «животное» электричество.
Итак, многолетний спор закончился - оба его участника оказались правы. Биолог Гальвани стал первопроходцем в изучении биологического электричества, а физик Вольта - создателем химического источника тока, которому современники дали название «вольтова столба» (см. рисунок). Этот простой прибор сослужил огромную роль в физике и технике, но это - тема отдельной увлекательной статьи из истории физики.

Луиджи Гальвани - исследователь биоэлектричества

Родился 9 сентября 1737 года в Болоньи (папская область), жил и умер там же в 4 декабря 1798, прожив полных 61 год. По роду деятельности он был врачом, физиком и философом, что в то время было вполне обыденным. Его латинское имя читается как Aloysius Galvani (Алоизий Гальвани).

Луиджи Гальвани был первым, кто начал исследовать биоэлектричество . В 1780 году Луиджи проводил эксперименты над телами мёртвых лягушек. Он пропустил через их мышцы электрической ток, и лапки дёрнулись, мышцы начали сокращаться. Это был первый шаг на пути изучения сигналов нервной системы.

Краткая биография

Луиджи Гальвани (1737-1798)

Родился от Доминико и его четвёртой жены Барбары Фоски. Родители Луиджи не были аристократами, но они имели достаточно средств, чтобы дать образование одному из детей. Луиджи Гальвани хотел получить церковное религиозное образование, в ту эпоху это было во многом престижно, и он 15 лет обучался в религиозном институте, а именно в молельне Padri Filippini (Oratorio dei Padri Filippini). В дальнейшем он собирался принять религиозные обеты, но его родители убедили его не делать этого и продолжить своё образование дальше. Примерно в 1755 году Луиджи поступил на факультет искусств университета Болоньи. Там же Луиджи прошёл медицинский курс в котором он изучил труды Гиппократа , Галена и Авиценны (Ибн Сина ). Кроме изучения трудов, Луиджи занимался медицинской практикой, в том числе хирургической. Это позволило ему в дальнейшем заняться изучением исследованием биоэлектричества .

В 1759 году, Луиджи Гальвани получил степень в медицине и философии, что давало ему право читать лекции в университете после защиты диссертации, которую он защитил в 21 июня 1761 года. Уже в 1762 году он стал почётным лектором по анатомии и хирургии. В этом же году он женился на Люсии Галеззи (Lucia Galeazzi) - дочери одного из профессоров университета. Луиджи переехал жить в дом профессора Галеззи (Galeazzi) и помогал ему в его исследованиях. После смерти своего тестя в 1775 году, Луиджи Гальвани был назначен преподавателем вместо умершего Галеззи.

В обязанность Гальвани как члена Академии наук с 1776 года входило регулярное проведение исследований в области практической анатомии человека. Он должен был публиковать как минимум одно исследование в год.

Эксперименты с лягушками

По прошествии нескольких лет, Луиджи Гальвани стал проявлять интерес к медицинскому использованию электричества. Эта сфера исследований появилась с середины 18-го века, после того, как было обнаружено действие электричества на организм человека.

Схема эксперимента Луиджи Гальвани с телом лягушки, примерно конец 1780-х

Существует легенда, согласно которой начало экспериментов с биоэлектричеством было положено со случая, произошедшего следующим образом.

Луиджи положил мёртвую лягушку на стол, чтобы экспериментировать с её кожей для выработки статического электричества . До этого на столе уже проводились опыты со статическим электричеством, и получилось так, что его ассистент (помощник) прикоснулся металлическим скальпелем на котором был электрический заряд к открытому седалищному нерву лягушки. Должно быть он собирался её препарировать. Но тут случилась неожиданное. Помощник увидел искры и нога мёртвой лягушки сократилась как при жизни.

Это наблюдение было первым шагом к тому, чтобы начать исследование биоэлектричества . Была обнаружена связь, между нервной деятельностью и электричеством, между биологической жизнью и электрическими сигналами. Стало очевидным, что мышечная деятельность осуществляется с помощью электричества, с помощью тока в электролитах. До этого в науке было принято считать, что мышечная активность происходит посредством некой субстанции называемой именем стихий воздуха и воды.

Гальвани ввёл термин - животное электричество (animal electricity) для описания той силы, которая активирует мышцы. Это явление в дальнейшем назвали гальванизм (galvanism ), но уже после Гальвани по предложению его современников.

На сегодняшний момент изучением гальванических эффектов биологии занимается такой раздел как электрофизиология. Название гальванизм больше используется в историческом контексте, чем в научном.

Гальвани против Вольта

Профессор экспериментальной физики Алессандро Вольта в университете Павии (Pavia) был первым учёным, который засомневался в правильности экспериментов Гальвани и продолжил исследования.

Его целью было выявить, действительно ли причиной сокращения мышц является биоэлектричество , или же оно происходит в следствие металлического контакта. Подразумевалось, что живые клетки не могут вырабатывать электричество, а значит тогда и нет никакого животного электричества.

Алессандро Вольта проверил свою гипотезу и выяснил, что действительно, живые клетки способны вырабатывать электричество, а значит биоэлектричество существует, живые клетки являются источниками тока. Гипотеза Вольта, что мышцы сокращаются только в следствие внешнего электричества, когда касаются металлическим предметом имеющим статический заряд, была им же и опровергнута. Дальнейшие исследования Алессандро Вольта привели его к созданию гальванической батареи, в которых используются электрохимические явления подобные тем, что происходят в живых клетках.

В результате исследований Вольта обнаружил, что каждая клетка имеет свой клеточный потенциал, что биоэлектричество имеет те же самые химические основы, что и электрохимические ячейки, дающие разность потенциалов . Алессандро Вольта проявил уважение к своему коллеги и ввёл термин гальванизм , чтобы подчеркнуть заслугу Луиджи Гальвани в открытии биоэлектричества . Однако, Вольта возражал, против некоего особого электричества в виде животной электрической жидкости , и был прав. Наградой стало создание химических источников тока - гальванических элементов. Алессандро Вольта первый построил химические батареи состоящие из многих гальванических элементов. Такие батареи носили название вольтов столб , из многих элементов собирался источник со значением ЭДС более 100 Вольт, что позволило проводить дальнейшее изучение явлений электричества.

Сочинения Луиджи Гальвани

Основная работа Луиджи Гальвани по биоэлектричеству называется De Viribus Electricitatis in Motu Musculari Commentarius (формат PDF) , в переводе на русский язык Трактат о силах электричества при мышечном движении (формат djvu) . Эти работы вы можете скачать для углублённого изучения и расширения своего кругозора.