Предварительный усилитель корректор для винила. Предусилители-корректоры для «винила




Винил корректор — обязательная составляющая любого проигрывателя виниловых дисков. От его качества напрямую зависит качество воспроизведения. Рассмотрим сегодня зарекомендовавшие себя и многократно опробованные схемы, по которым можно собрать винил корректор.

Я уже рассказывал . Сегодня же рассмотрим пару схем винил корректора на ОУ. Обе схемы собирались и проверялись лично, и прекрасно работают уже более 5 лет.

Винил корректор, схема из даташита на TDA2320A

Схема позаимствована из даташита на микросхему TDA2320A. По сути это просто сдвоенный операционный усилитель который может быть заменен на любой другой сдвоенный операционный усилитель без изменения схемы.

Работа при однополярном напряжение питания обеспечивается подачей на неинвертирующие входы (3 и 5) половинного напряжения питания посредством применения делителей напряжения R1-R2-R5 и R3-R4-R6.

Емкости С1,С2 и С14,С15 на входах и выходах каждого канала нужны для отсечения постоянного напряжения. Конденсатор С13 в 0.1 мкФ, необходимый для фильтрации ВЧ помех по питанию, желательно расположить как можно ближе к ножке микросхемы, параллельно ему можно включить конденсатор емкостью 10-100мкФ

Чем интересна сама TDA 2320A

Фишкой данной микросхемы является то, что она является усилителем класса А. Это означает, что обе полу-волны сигнала усиливаются одним каскадом. В случае же класса B положительные и отрицательные полу-волны усиливаются разными каскадами внутри микросхемы.

Усилитель класса А гарантирует меньшее количество нелинейных искажений. Данная микросхема может работать как при однополярном напряжении питания от 3 до 36 вольт так и при двуполярном от +-1.5 до +-18 вольт соответственно. Распиновка микросхемы стандартная для операционных усилителей:


Данная микросхема разработана специально для использования в звуковых цепях, а возможность работы при таком низком напряжении питания в 3 вольта, позволяет использовать ее для портативных устройств, например для кассетного плеера. В даташите приведены примеры и других схем фильтров и корректоров.

Винил корректор с двухполярным питанием

Следующая схема была найдена в книге “”Искусство схемотехники”- П.Хоровиц, У.Хилл (стр. 167). На схеме изображен один канал винил корректора:


По сути эта та же самая схема. Но теперь уже используется двухполярное питание, а так же иначе рассчитаны номиналы частотозадающих цепей. Использование двухполярного питания позволяет отказаться как от применения делителей для формирования половинного напряжения питания, так и от выходного конденсатора. Входной конденсатор следует оставить для отсечениея возможного постоянного напряжения предыдущего каскада, а так же как элемент входной RC цепи.

В данной схеме, как и в предыдущей следует установить емкости по питанию 10-100 мкФ и 0.1 мкФ максимально близко к ножкам питания ОУ . Заземленный конденсатор в 47 мкФ уменьшает коэффициент усиления по постоянному току до единицы.


График представляет из себя частотную характеристику усилителя воспроизведения, построенную относительно значения коэффициента усиления 0 дБ при частоте 1кГц.

В качестве операционных усилителей могут быть применены и TL062, TL072, но лучше отдать предпочтение TDA2320, L4558, LM833 и другим ОУ, предназначенным для звуковых цепей, либо обладающими высоким входным сопротивление (>1МОм), низким уровнем шумов и высокой скоростью нарастания сигнала.

Вместо заключения

Какой вариант и на каких операционных усилителях собирать винил корректор — решать вам. Я лично предпочитаю схему на ОУ с двухполярным питанием, ввиду отсутствия лишних элементов, однако схема с однополярным питанием справляется со своей задачей ни чуть не хуже, а применение качественных операционных усилителей и компонентов позволит добиться значительного прироста в качестве звука.

Введение

Кривая RIAA является общепринятым стандартом для виниловых дисков. Он используется в течение длительного времени с 1954 года. К 1956 году новый стандарт, за которым закрепилось название «кривой RIAA», вытеснил конкурирующие форматы и захватил рынки США и Западной Европы. В 1959 году кривая RIAA была одобрена, а в 1964 году стандартизована Международной электротехнической комиссией. В 1976 году МЭК видоизменила стандартную кривую воспроизведения RIAA в области низких частот; нововведение встретило ожесточённую критику и не было принято промышленностью. В XXI веке подавляющее большинство производителей предусилителей-корректоров следует первоначальному стандарту кривой RIAA без изменений, введённых МЭК в 1976 году.

Частотная коррекция по стандарту RIAA может быть реализована как активными, так и пассивными фильтрами, и комбинациями фильтров двух типов. Многие используют корректоры, построенные полностью на пассивных фильтрах, в убеждении, что они звучат «лучше», но схема, показанная здесь, реализована комбинацией фильтров двух типов. Эта концепция была разработана мною задолго до появления Интернета, а показанная схема (с несколькими небольшими изменениями) была впервые опубликована на веб-сайте ESP в 1999 году.

На приведенном выше графике показана теоретическая и фактическая АЧХ RIAA, нормализованная к 0 дБ на частоте 1 кГц. Большинство фонокрорректоров RIAA имеют дополнительный (и нежелательный) ноль на некоторой частоте выше 20 кГц. Этот дополнительный ноль отсутствует в описываемой конструкции, потому что в схеме используется пассивный фильтр нижних частот, который продлевает кривую АЧХ выше 20 кГц, при этом конечный предел значительно превышает 10 МГц (в зависимости от собственной индуктивности конденсатора).

Термины «полюс» и «нуль» нуждаются в некотором (в данном случае упрощенном) объяснении. Один полюс заставляет сигнал снижаться со скоростью 6 дБ / октава (20 дБ / декада), а один нуль вызывает рост с той же скоростью. Если после полюса вводится ноль (как показано выше), то эффект заключается в том, чтобы перевести АЧХ в горизонтальную форму. Горизонтальная АЧХ наблюдается на частотах от 500 Гц до 2100 Гц. Следующий полюс (2,100 Гц) заставит сигнал снова снижаться. «Неопределенный» ноль выше 20 кГц вызван тем, что многие предусилители не могут уменьшить свой коэффициент усиления ниже некоторого фиксированного значения, определенного схемой. Однако, не все корректоры обладают этой проблемой, нет ее и в приведенной схеме.

Следует отметить, что стремление к «идеальной» точности бессмысленно, так как многое зависит от иглы, тонарма и (конечно) записи. Когда вы покупаете винил, никто не скажет вам, какой эквалайзер был применен во время мастеринга, кроме того, АЧХ ухудшается после многократного воспроизведения. Поэтому, в конечном счете, вы должны позволить своим ушам стать последним судьей в том, что предпочтительно именно вам.

Представленный фонокорректор соответствует кривой RIAA, он очень «тихий» и обеспечивает гораздо лучшую звуковую эффективность, чем подавляющее большинство тех устройств, что приводятся в различных журналах. Как и в остальных каскадах предусилителя, в схеме фонокорректора используется ОУ NE5532. Он обладает низким уровнем шума, высокой скоростью и приемлемой ценой. Он идеально подходит для такого рода применения. Другим отличным ОУ является OPA2134.


Рис. 1. Схема фонокорректора

Входной конденсатор помечен * (C LL , и его эквивалент на правом канале - C LR) и устанавливаются опционально. Почти во всех случаях он не нужен, так как емкость кабеля между звукоснимателем и предусилителем будет (более чем) достаточной. Некоторые производители указывают требуемую емкость нагрузки, но многие этого не делают. Подавляющее большинство звукоснимателей выполнены с самой низкой возможной емкостью, и добавление дополнительного конденсатора вряд ли улучшит ситуацию. Мало у кого есть возможность измерить емкость межблочных соединений или внутренних кабелей тонарма, но она, как правило, находится в пределах 100 пФ со стандартными кабелями. В случае, если производитель звукоснимателя заявил более высокую емкость – не стесняйтесь экспериментировать со значением C L . Лучше всего подключать эти конденсаторы непосредственно к входным разъемам, а не размещать на печатной плате. Конденсаторы должны быть подобраны таким образом (с точностью до 1%), чтобы левый и правый каналы остались правильно сбалансированными.

Конденсаторы с высокими емкостями могут быть неполярными электролитическими, так как через них не будет (практически) протекать постоянный ток. Тем не менее, они довольно большие по размеру, и стандартные электролитические или даже танталовые конденсаторы могут быть использованы вместо них. Полярные конденсаторы будут нормально функционировать без влияния постоянного напряжения, а тантал - мой нелюбимый тип конденсатора и поэтому не рекомендуется. Напряжение переменного тока, протекающего через С2L/R и C3R/L никогда не будет превышать ~5 мВ на любой частоте вплоть до 10 Гц, и эти конденсаторы не играют никакой роли в построении кривой RIAA. Не бойтесь увеличить значение, если хотите (100 мкФ не является проблемой).

Конденсаторы с низкими емкостями должно быть с точностью 2,5%, в противном случае будет трудно подобрать те, которые находятся ближе всего к требуемому значению. Будет происходить некоторое отклонение от идеальной кривой RIAA, если номиналы этих конденсаторов будут находятся слишком далеко от указанных значений. Наиболее важным является соответствие между каналами - он должно быть как можно более точным.

Резисторы - металлопленочные с точностью 1% и низким уровнем шума. Эта конструкция отличается от большинства других тем, что формирование низкой и высокой частоты выполняется независимо – активным фильтром НЧ и пассивным фильтром ВЧ. Из-за низкого значения выходного резистора, входное сопротивление следующего каскада снизится до 22 кОм и вызовет незначительное искажение кривой RIAA.

На рис. 1 показан только один канал, а другой использует оставшуюся половину каждого ОУ. Помните, что «+» питания подключается к контакту 8, а «–» питания - к контакту 4.

Общепринятое выравнивание кривой при 50 Гц не была полностью реализовано, так как большинство слушателей считают, что бас звучит гораздо более естественно без этого. В связи с этим можно сказать, что точности не хватает, но я до сих пор использую эту неточность и не выявил никаких проблем с низкочастотным шумом.

Обратите внимание, что нет необходимости использовать фильтр ИНЧ. Схема обеспечивает уровень -3 дБ в точке около 3 Гц. ИНЧ играют важную роль, особенно если вы используете сабвуфер. Отличным вариантом является хорошо демпфированная и изолированная платформа для проигрывателя. Я успешно использовал большую бетонную плиту, покрытую ковровым покрытием и демпфированную с использованием пенорезины. Для того, чтобы все сделать правильно, потребуются некоторые эксперименты. Как правило, хорошие результаты получаются при сжатии пеноматериала до 70% его нормальной толщины под весом бетонной плиты и проигрывателя. Полка, прикрепленная к стене, является еще одним хорошим методом обеспечения инфразвуковой изоляции.

Если все же будет иметь место низкочастотный шум, вы увидите энергичное движение диффузора, даже если нет баса. В таком случае я рекомендую включать в схему инфразвуковой фильтр (Project 99). Стандартная конфигурация - 36 дБ на октаву с ослаблением -3 дБ на частоте 17 Гц. Как правило, это помогает устранить даже самые сильные низкочастотные помехи, вызванные использование искривленных дисков. Обычно это помогает также устранить проблемы НЧ обратной связи, но они должны быть ниже частоты среза фильтра.

Характеристики кривой RIAA

Как видно из таблицы, отклонение от стандарта составляет менее 1 дБ, а коэффициент усиления на частоте 1 кГц составляет около 40 дБ (100), поэтому номинальные 5 мВ с выхода звукоснимателя даст 500 мВ. Это значение может быть увеличено в случае необходимости за счет увеличения значения резистора 100 кОм во втором каскаде. Необходимо проявлять осторожность, чтобы усиление не возросло слишком сильно и не вызвало клиппинг. Как можно заметить, второй каскад имеет коэффициент усиления 38 (31 дБ).

Если резистор 100 кОм увеличить до 220 кОм общее усиление будет чуть больше, чем в два раза, на 38 дБ. Входной сигнал на 2-й ступени в 17 мВ (5 мВ с выхода звукоснимателя) дает нормальный выход на 1 кГц (до пассивного фильтра) от 1,12 В RMS. Теоретический выход на частоте 20 кГц превышает 9,75 В RMS, но это никогда не происходит, потому что на частоте 20 кГц все записи будут на 15-20 дБ ниже уровня на частоте 1 кГц (см. АЧХ на рис. 2).

Это означает, что фактический уровень выходного сигнала на частоте 20 кГц обычно составляет в лучшем случае около 1 В RMS. Тем не менее, если усиление второго каскада увеличить слишком сильно, существует риск клиппинга. Это возможность маловероятна в связи с характером музыки - очень мало основной частоты любого инструмента (кроме синтезатора) выше 1 кГц, и большинство гармоник скатываются естественным образом на 3-6 дБ на октаву выше 2 кГц,– но она должна обязательно учитываться.

Одним из факторов, который часто упускается из виду в фонокорректорах, является емкостная нагрузка на выходе операционного усилителя на высоких частотах. Это устранено в данной конструкции, а так как NE5532 и OPA2134 могут с легкостью управлять нагрузкой в 600 Ом, то резистор 820/750 Ом изолирует выходной каскад от любой емкостной нагрузки. Первый каскад имеет 10 кОм в сочетании с конденсатором, поэтому емкостная нагрузка не является проблемой.

Каждый ОУ должен быть зашунтирован электролитическими конденсаторами 10 мкФ х 25 В от каждого плеча питания на землю и конденсаторами емкостью 100 нФ между выводами питания.

Заметим, что при использовании звукоснимателя с подвижной катушкой, должен быть использован повышающий трансформатор или предварительный усилитель со сверхнизким уровнем шума. Эта схема предназначена для использования со стандартным подвижным магнитом.

Зависимость уровня сигнала от частоты

Существует очень мало информации в сети и других местах, чтобы дать любому человеку представление о том, на каком уровне они должны ожидать звук на любой частоте. Изображение на рис. 2 было захвачено с использованием «Visual Analyzer» – одной из многих доступных компьютерных программ на основе быстрого преобразования Фурье. Сигнал был взят из FM-тюнера – вы можете увидеть резкий спад частотной характеристики выше 15 кГц и пилот-тон на частоте 19 кГц, используемый для декодирования 38 кГц FM-поднесущей. Захват был снят с австралийской "альтернативной" радиостанции, так что включает в себя несколько различных жанров музыки, а также речь.


Рис. 2. Типичная АЧХ

Захват был настроен для удержания максимального уровня, обнаруженного за время выборки (более 2-х часов), так что представляет собой самый высокий уровень, записанный по все полосе частот. Коррекция не использовалась на принятом сигнале, захватывался непосредственно эфирный сигнал. Хотя все выше 15 кГц удаляется, общая тенденция отчетливо видна. В то время, как всегда будут отклонения и исключения с различными музыкальными стилями, общая тенденция действует в широком диапазоне музыкальных стилей.

"Эталонный" уровень -9 дБ на частоте 1 кГц. Максимальные пиковые уровни наблюдаются между 30 Гц и 100 Гц, А уровень между 200 Гц и 2 кГц является достаточно «плоским», показывая примерно 3 дБ падения в границах этого диапазона частот. Наблюдается спад с крутизной 6 дБ в октаву в диапазоне 2-4 кГц, за которам следует ослабление в 10 дБ в диапазоне 4-8 кГц.

Больший интерес представляет амплитуда самых высоких пиков, потому что перегрузка будет иметь место на пиках, а не средних уровнях. На 10 кГц и чуть выше, есть пики при -18 дБ и некоторые дополнительные пики (-24 дБ) на частоте чуть ниже 15 кГц.

Исходя из этого, разумно ожидать, что худшем случае уровень сигнала на частотах выше 15 кГц не будет превышать -30 дБ, и это на 21 дБ ниже уровня на частоте 1Гц (чуть меньше, чем 1/10). Поэтому звукосниматель с выходом 5 мВ на эталонной частоте 1кГц не будет иметь больше 5 мВ на любой частоте около 20 кГц – это самый высокий уровень, которого мы можем ожидать.

При использовании рекомендуемых значений компонентов для эквалайзера RIAA максимально возможный уровень сигнала на выходе второй ступени составляет около 1 В RMS – довольно хорошо в пределах возможностей предложенных операционных усилителей. Даже если максимальный уровень будет 50 мВ (тот же результат на 20 кГц как и на 1 кГц), второй каскад по-прежнему будет ниже уровня перегрузки.

Данная статья для тех кто до сих пор любит и ценит виниловый звук, вопреки всем цифровым современным штучкам 🙂

Корректор используется, чтобы усилить и корректировать сигнал, который поступает с электропроигрывающей головки ЭПУ с алмазной либо корундовой иглой. В основе работы корректора лежит стандарт RIAA, в нём регламентированы основные требования к записи и воспроизведению грамзаписи с виниловых дисков. По стандарту RIAA вид АЧХ имеет вид, представленный на рис. 2. По этой причине, чтобы достичь линейность АЧХ воспроизводящего трэка нужно применить фонокорректор, его АЧХ представлена на рис. 3.

Рис. 2

Рис. 3

Схема практического усилителя - фонокорректора представлена на рис. 4, а схема блока электропитания показана на рис. 5.

Рис. 4

Рис. 5

Основа схемы состоит из двухкаскадного усилителя, который построен по классической схеме усилителя напряжения с резистивной нагрузкой. Частотную коррекцию сигнала создаёт пассивная цепь частотной коррекции. Чтобы работа фильтра была надёжной он поставлен в разрез между двумя каскадами усиления.

График реальной АЧХ фонокорректора показан на рис. 6. Как видите, вид практической характеристики почти не имеет отличия от теоретической.

Рис. 6

Элементы, конструкция и налаживание

Для правильной и надёжной работы корректора все элементы, которые применяются при его сборке должны быть наилучшего качества и должны иметь минимальный допуск погрешности номинала. Максимальный допуск номинала для цепей частотокорректирующей цепи ±1%. Для остальной схемы ±5%. Допускается применение элементов с большим допуском, но тогда нужно индивидуально подбирать элементы по номиналу. Так же рекомендуется применение радиоламп с военной приёмкой и маркировкой ЕВ (то есть с повышенной долговечностью и механической прочностью).

Корпус этого устройства может быть выполнен с закрытыми и с открытыми радиолампами. Корпус можно изготовить из металла (сталь, медь, латунь и др.), пластмассы и дерева. В двух последних случаях обязательно нужна ещё дополнительная экранировка внутренней схемы медной либо латунной фольгой. На рисунках 1 и 7 представлен один из возможных вариантов конструкции фонокорректора.

Рис. 7

Особое внимание нужно уделять и блоку питания фонокорректора, поскольку главной проблемой предварительных усилков считается большой уровень фона. Чтобы максимально уменьшить уровень фона при сборке блока питания нужно принять несколько мер. Прежде всего, блок питания должен быть сделан в своём отдельном корпусе (чтобы предотвратить влияние электромагнитных полей сетевого трансформатора). Сетевой трансформатор лучше разместить в экран, либо как минимум намотайте на него дополнительную экранную обмотку. На схеме показаны минимальные номиналы всех электролитических конденсаторов. Чтобы надёжно устранить фон их ёмкости лучше увеличить в 1.5 - 2 раза. Особенно важен номинал конденсатора C1, потому что накальное напряжение устройства (в отличие от анодного) не стабилизировано. Стабилизация анодного напряжения достигнута при помощи “Электронного дросселя”. Разделение питания стереоканалов не нужно, поскольку разделение каналов при грамзаписи совсем небольшое.

Это всё. До свидания.

На задней панели можно увидеть разъём типа DIN-5 (СГ-5). Я оставил его как задел на будущее, точно не зная, как именно смогу его использовать. В этом году наконец наступила ясность — я задействовал его для подключения самодельного фонокорректора, вынесенного в отдельный блок.

Порой фонокорректор путают с темброблоком — узлом, позволяющим менять баланс высоких и низких частот для придания звуку желаемой окраски. У фонокорректора совсем другое назначение: без него не обойтись при воспроизведении музыки с виниловых пластинок, если используется магнитная головка звукоснимателя. Дело в том, что сигнал записывается на пластинки с изменением спектра: амплитуда низкочастотных колебаний существенно уменьшается, а высокочастотных — увеличивается. Это делается для снижения потерь; АЧХ такого преобразования называется кривой RIAA (Recording Industry Association of America) и выглядит следующим образом:

Чтобы восстановить сигнал в исходном виде, звуковую дорожку нужно «распаковать», а затем усилить сигнал до уровня, достаточного для подачи в схему основного усилителя. Этим и занимается фонокорректор. По сути, он представляет собой небольшой предусилитель со встроенным набором фильтров.

В большинстве заводских усилителей есть встроенный фонокорректор, но в моей самоделке его по понятным причинам не было. Фонокорректор можно было бы расположить в имеющемся корпусе, но тогда пришлось бы либо радикально уплотнять внутреннюю компоновку, чтобы разместить лампы в «подвале», либо отказываться от красивых зелёных индикаторов спереди. Эти варианты меня не устраивали, поэтому я решил сделать фонокорректор в виде отдельного устройства. А когда я взялся продумывать его конструкцию, то понял, что можно обойтись без отдельного блока питания, если использовать тот, что встроен в усилитель. Запас по мощности вполне позволял это сделать, а техническая реализация такого финта не представляла сложности. Таким образом, было решено делать фонокорректор в формате приставки к основному устройству. Лично я таких девайсов не встречал — хотя, быть может, они мне просто не попадались на глаза.

Я подвёл к разъёму DIN-5 накальное и анодное напряжения, а также провод «земли». Контакты я назначил так, чтобы в случае ошибочного подключения какой-либо другой аудиотехники замкнутых цепей не образовалось бы и ничего бы не сгорело.

В качестве корпуса для фонокорректора был выбран алюминиевый бокс фирмы Gainta (из той же серии, что и кожухи для трансформаторов усилителя). Я прикинул, что в нём можно разместить вот такую несложную, но проверенную временем схему на советских лампах 6Н2П:

Я нашёл её в интернете и немного модифицировал, почитав обсуждения на форумах. Затем я перерисовал схему в программе sPlan 7.0, создав свой шаблон оформления по мотивам иллюстраций в старых книгах по радиоэлектронике.

Рабочий макет фонокорректора я собрал на том же стенде, на котором три года назад собирал усилитель. Я закрепил ламповые панельки на том же расстоянии, на каком собирался их расположить в корпусе, и благодаря этому в дальнейшем смог просто переставить готовую схему с макета, ничего не перепаивая.

Классический «ламповый» навесной монтаж с максимальным использованием выводов самих радиодеталей не только упрощает сборку, но и позволяет снизить уровень наводок.

На схеме выше показан только один канал фонокорректора; для стереозвука их нужно два. Лампа 6Н2П представляет собой двойной триод, то есть можно было бы собрать каждый канал на своей лампе, но по многим причинам лучше использовать половинки разных ламп, как я и сделал.

Чтобы не ошибиться с разметкой корпуса, я сделал упрощённую модель будущего устройства в Inventor:

Я взял советские керамические панельки типа ПЛК-9 с пояском, позволяющим устанавливать экранирующие колпачки. Фонокорректор добавляет два каскада к цепи усиления, так что дополнительная защита от наводок не будет лишней. Полностью панельки не помещались по высоте, так что их пришлось немного вынести наружу. Чтобы пояски смотрелись лучше, я запланировал отполировать их. Ну а пока размечаем отверстия для ламп...

И сверлим много-много дырочек по контуру. Наверное, можно было использовать ступенчатое сверло большого диаметра, но я решил перестраховаться, чтобы не испортить заготовку.

Выровнять отверстия мне помогли точно подобранные по диаметру отрезные круги для дремеля.

Один из наиболее ответственных этапов работы — проделывание отверстий под стойки, к которым будет крепиться начинка. Нельзя ошибиться даже на 0,5 мм, иначе панельки просто не совпадут с окнами в крышке, а переделать что-либо будет очень сложно. Но всё получилось с первого раза.

Стойки не образуют в плане прямоугольник — так было сделано, чтобы внутренняя схема получилась более симметричной, а лампы смотрели «лицом» на меня.

После добавления фильтрующих конденсаторов по питанию получилась вот такая плотно упакованная начинка:

На снимке, увы, монтаж смотрится довольно беспорядочным, хотя я старался выполнить его как можно аккуратнее. Возможно, дело в том, что фотография плохо передаёт объём, и элементы с разных уровней накладываются друг на друга. На самом деле они разнесены на достаточное расстояние, а кое-где для безопасности на их выводы надеты изолирующие трубки.

В задней части крышки я пропилил арки диаметром чуть меньше, чем у кабелей. Вместе с бортиком, идущим по краю основания корпуса, это обеспечивает надёжную фиксацию кабелей, а крышка остаётся легко снимаемой.

На следующей фотографии левый кабель служит для подключения к блоку питания усилителя, средний передаёт выходной сигнал, а правый является входом для проигрывателя пластинок.

Доставшийся мне в наследство проигрыватель Radiotehnika «Ария-102-стерео» имеет выходной разъём того же типа DIN-5. Конечно, его можно заменить на современные «тюльпаны», но я решил оставить вещь в её оригинальном виде. Если у меня появится другой проигрыватель, проще будет перепаять разъём на кабеле фонокорректора.

Снизу к корпусу приклеены четыре ножки, вырезанные из листовой резины с хорошей «хваткостью».

Вот так система выглядит в сборе:

Фонокорректор работает чисто, практически не добавляет шума, так что можно даже не ставить на лампы экранирующие колпачки.

Меня нельзя назвать виниломаном, да и «Ария-102» — прямо скажем, не тот проигрыватель, от которого стоит ждать небывалых глубин звука. Свой фонокорректор я делал не с целью превзойти серийные решения. Скорее мне было интересно создать ламповое устройство в необычном форм-факторе — ну и получить возможность слушать грампластинки через свой усилитель, конечно же. В этом плане затея удалась на все сто.

Gabor Toth

Описание

Чтобы слушать старые виниловые пластинки с полноценным звучанием, вам понадобится схема, называемая RIAA корректор. Эту можно найти в старых усилителях, но в современную домашнюю аппаратуру ее уже давно не встраивают. Если вы захотите заархивировать ваши виниловые записи на ПК, вам также будет необходим RIAA корректор. Было бы хорошо, если бы корректор имел встроенный усилитель мощности для небольших динамиков или наушников. В описываемом здесь устройстве такой усилитель есть. Оно состоит из двух частей: корректора и усилителя.

Корректор выполнен на сверхмалошумящей микросхеме NE5532 . В схеме корректора используются металло-пленочные резисторы с допуском 1%, мощностью 0.6 Вт, конденсаторы должны быть с допуском 5% или лучше, с рабочим напряжением 63…100 В. Корректор имеет прямой выход на внешний усилителя или ПК.

Усилитель выполнен на микросхеме LM1877 . Он обеспечивает выходную мощность 2 Вт на канал с очень низкими искажениями. Потенциометр P1 служит для регулировки выходной мощности усилителя.

Вся схема питается от внешнего источника постоянного напряжения 12…16 В. Схему, фотографии устройства и печатную плату можно скачать по соответствующим ссылкам.

Перечень компонентов

Компонент

Количество

Резистор

Резистор

Резистор

Резистор

Резистор

Резистор

Резистор

Резистор

Потенциометр

2 × 50 кОм
логарифмический

Конденсатор

Конденсатор

Конденсатор

Конденсатор

Конденсатор

Электролитический конденсатор

Электролитический конденсатор

Электролитический конденсатор

Электролитический конденсатор

Электролитический конденсатор

Электролитический конденсатор

Микросхема

Микросхема

Стабилитрон

RCA разъем для монтажа на п/п, одинарный, красный (правый канал)

RCA разъем для монтажа на п/п, одинарный, белый (левый канал)

Разъем питания для монтажа на п/п 5×2.5 мм

Разъем для наушников для монтажа на п/п

Внешний источник питания 12 В/не менее 5 Вт

Печатная плата

Загрузить рисунок печатной платы или в

Кривая RIAA

При записи виниловых дисков уровень низких частот уменьшают, а высоких - поднимают. Это связано с тем, что для одного и того же уровня звука низкие частоты требуют более широкой гравировки, что создает следующие сложности:

  • Малое время записи
  • Игле считывающей головки труднее отслеживать такую канавку записи, и это приводит к повышенным искажениям.

На противоположном, конце звукового спектра, вследствие механического контакта иглы с дорожкой записи, возникают высокочастотные шумы. Увеличивая уровень высоких частот при записи, мы получаем лучшее соотношение сигнал/шум.

До кривой RIAA существовало несколько других кривых воспроизведения, но RIAA полностью вытеснила их в течении 60-х годов 20 века.
Ниже представлена формула для получения оригинальной кривой RIAA:

N - уровень в дБ
f - частота
t 1 - высокочастотная временная константа, 75 мкс
t 2 - среднечастотная временная константа, 318 мкс
t 3 - низкочастотная временная константа, 3180 мкс

В 1976 году IEC представила модификацию этой кривой, введя новую временную константу, влияющую только на нижнюю часть низкочастотного диапазона. Эта кривая получила название RIAA/IEC. Этот тип коррекции так и не получил широкого признания, первоначальная кривая RIAA все же стала наиболее распространенной.

Для информации здесь представлена формула:

t 4 - введенная IEC временная константа, 7950 мкс

Кривая воспроизведения RIAA: