Усилитель звуковых частот на tda7294. TDA7294: схема усилителя




Статья посвящается любителям громкой и качественной музыки. TDA7294 (TDA7293) – микросхема усилителя низкой частоты производства французской фирмы THOMSON. Схема содержит полевые транзисторы, что обеспечивает высокое качество звучания и мягкий звук. Простая схема, мало добавочных элементов делает схему доступной для изготовления любому радиолюбителю. Правильно собранный усилитель из исправных деталей начинает работать сразу и в наладке не нуждается.

Усилитель мощности звуковой частоты на микросхеме TDA 7294 отличается от остальных усилителей такого класса:

  • высокая выходная мощность,
  • широкий диапазон напряжения питания,
  • низкий процент гармонических искажений,
  • «мягкий» звук,
  • мало «навесных» деталей,
  • невысокая стоимость.

Применять можно в радиолюбительских аудиоустройствах, при доработке усилителей, акустических систем, устройств аудиотехники и т.д.

На рисунке ниже показана типовая принципиальная схема усилителя мощности для одного канала.


Микросхема TDA7294 это мощный операционный усилитель, коэффициент усиления которого устанавливается цепью отрицательной обратной связи, включенной между его выходом (14 выв. микросхемы) и инверсионным входом (выв. 2 микросхемы). Прямой сигнал поступает на вход (выв. 3 микросхемы). Цепь состоит из резисторов R1 и конденсатора С1. Изменяя значения сопротивлений R1 можно подстроить чувствительность усилителя под параметры предварительного усилителя.

Структурная схема усилителя на TDA 7294

Технические характеристики микросхемы TDA7294

Технические характеристики микросхемы TDA7293

Принципиальная схема усилителя на TDA7294

Для сборки этого усилителя понадобятся следующие детали:

1. Микросхема TDA7294 (или TDA7293)
2. Резисторы мощностью 0.25 вата
R1 – 680 Om
R2, R3, R4 – 22 kOm
R5 – 10 kOm
R6 – 47 kOm
R7 – 15 kOm
3. Конденсатор плёночный, полипропиленовый:
C1 – 0.74 mkF
4. Конденсаторы электролитические:
C2, C3, C4 – 22 mkF 50 volt
C5 – 47 mkF 50 volt
5. Резистор переменный сдвоенный — 50 kOm

На одной микросхеме можно собрать моно усилитель. Чтобы собрать стерео усилитель, надо сделать две платы. Для этого все необходимые детали умножаем на два, кроме сдвоенного переменного резистора и БП. Но об этом позже.

Печатная плата усилителя на микросхеме TDA 7294

Монтаж элементов схемы выполнен на печатной плате из одностороннего фольгированного стеклотекстолита.

Похожая схема, но немного побольше элементов, в основном конденсаторов. Включена схема задержки включения по входу «mute» выв.10. Это сделано для мягкого, без хлопков, включения усилителя.

На плату устанавливается микросхема, у которой удалены не использующиеся выводы: 5, 11 и 12. Производите монтаж проводом с сечением не менее 0,74 мм2. Саму микросхему необходимо установить на радиатор площадью не менее 600 см2. Радиатор не должен касаться корпуса усилителя так, как на нём будет отрицательное напряжение питания. Сам же корпус необходимо соединить с общим проводом.

Если использовать меньшую площадь радиатора, необходимо сделать принудительный обдув, поставив вентилятор в корпус усилителя. Вентилятор подойдёт от компьютера, напряжением на 12 вольт. Саму микросхему следует крепить на радиатор с помощью теплопроводной пасты. Радиатор не соединять с токоведущими частями, кроме шины отрицательного питания. Как писали выше, металлическая пластина сзади микросхемы соединена с цепью отрицательного питания.

Микросхемы для обоих каналов можно установить на один общий радиатор.

Блок питания для усилителя.

Блок питания представляет собой понижающий трансформатор с двумя обмотками напряжением 25 вольт и силой тока не менее 5 ампер. Напряжение на обмотках должно быть одинаковым и конденсаторы фильтра тоже. Нельзя допускать перекоса напряжения. При подаче двухполярного питания на усилитель, оно должно подаваться одновременно!

Диоды в выпрямителе лучше поставить сверхбыстрые, но в принципе подойдут и обычные типа Д242-246 на ток не менее 10А. Желательно параллельно каждому диоду припаять конденсатор ёмкостью 0,01 мкф. Также можно использовать готовые диодные мосты с такими же параметрами по току.

Конденсаторы фильтра C1 и C3 имеют ёмкость 22.000 мкф на напряжение 50 вольт, конденсаторы C2 и C4 имеют ёмкость 0,1 мкф.

Напряжение питания в 35 вольт должно быть только при нагрузке 8 Ом, если у вас нагрузка 4 Ома, то напряжение питания надо уменьшить до 27 вольт. В этом случае напряжение на вторичных обмотках трансформатора должно быть 20 вольт.

Можно использовать два одинаковых трансформатора мощностью 240 ватт каждый. Один из них служит для получения положительного напряжения, второй — отрицательного. Мощность двух трансформаторов составляет 480 ватт, что вполне подойдет для усилителя с выходной мощностью 2 х 100 Ватт.

Трансформаторы ТБС 024 220-24 можно заменить на любые другие мощностью не менее 200 Ватт каждый. Как писали выше питание должно быть одинаковое — транcформаторы должны быть одинаковые!!! Напряжение на вторичной обмотке каждого трансформатора от 24 до 29 вольт.

Схема усилителя повышенной мощности на двух микросхемах TDA7294 по мостовой схеме.

По такой схеме для стерео варианта понадобится четыре микросхемы.

Технические характеристики усилителя:

  • Максимальная выходная мощность на нагрузке 8 Ом (пит. +/- 25В) — 150 Вт;
  • Максимальная выходная мощность на нагрузке 16 Ом (пит. +/- 35В) — 170 Вт;
  • Сопротивление нагрузки: 8 — 16 Ом;
  • Коэф. гармонических искажений, при макс. мощности 150 ватт, напр. 25В, нагр. 8 Ом, частоте 1 кГц — 10%;
  • Коэф. гармонических искажений, при мощности 10-100 ватт, напр. 25В, нагр. 8 Ом, частоте 1 кГц — 0,01%;
  • Коэф. гармонических искажений, при мощности 10-120 ватт, напр. 35В, нагр. 16 Ом, частоте 1 кГц — 0,006%;
  • Частотный диапазон (при нер. АЧХ 1 db) — 50Гц … 100кГц.

Вид готового усилителя в деревянном корпусе с прозрачной верхней крышкой из оргстекла.

Для работы усилителя в полную мощность нужно подать необходимый уровень сигнала на вход микросхемы, а это не менее 750мВ. Если сигнала не хватает, то нужно собрать для раскачки предварительный усилитель.

Схема предварительного усилителя на TDA1524A

Налаживание усилителя

Правильно собранный усилитель в налаживании не нуждается, но никто не гарантирует, что все детали абсолютно исправны, при первом включении нужно соблюдать осторожность.

Первое включение проводится без нагрузки и с отключенным источником входного сигнала (лучше вообще закоротить вход перемычкой). Хорошо бы в цепь питания (и в «плюс» и в «минус» между источником питания и самим усилителем) включить предохранители порядка 1А. Кратковременно (~0,5 сек.) подаем напряжение питания и убеждаемся, что ток, потребляемый от источника небольшой — предохранители не сгорают. Удобно, если в источнике есть светодиодные индикаторы — при отключении от сети, светодиоды продолжают гореть не менее 20 секунд: конденсаторы фильтра долго разряжаются маленьким током покоя микросхемы.

Если потребляемый микросхемой ток большой (больше 300 мА), то причин может быть много: КЗ в монтаже; плохой контакт в «земляном» проводе от источника; перепутаны «плюс» и «минус»; выводы микросхемы касаются перемычки; неисправна микросхема; неправильно впаяны конденсаторы С11, С13; неисправны конденсаторы С10-С13.

Убедившись, что с током покоя все нормально, смело включаем питание и измеряем постоянное напряжение на выходе. Его величина не должна превышать +-0,05 В. Большое напряжение говорит о проблемах с С3 (реже с С4), или с микросхемой. Бывали случаи, когда «межземельный» резистор либо был плохо пропаян, либо вместо 3 Ом имел сопротивление 3 кОм. При этом на выходе была постоянка 10…20 вольт. Подключив к выходу вольтметр переменного тока, убеждаемся, что переменное напряжение на выходе равно нулю (это лучше всего делать с замкнутым входом, или просто с не подключенным входным кабелем, иначе на выходе будут помехи). Наличие на выходе переменного напряжения говорит о проблемах с микросхемой, или цепями С7R9, С3R3R4, R10. К сожалению, зачастую обычные тестеры не могут измерить высокочастотное напряжение, которое появляется при самовозбуждении (до 100 кГц), поэтому лучше всего здесь использовать осциллограф.

Всё! Можно наслаждаться любимой музыкой!


Одним из первых мною был собран усилитель на TDA7294 по схеме предложенной производителем.

Вместе с тем, качество воспроизведения звука особенно в области высоких частот меня не очень устраивало. В сети интернет мое внимание привлекла статья LINCOR, размещенная на сайте datagor.ru. Восторженные отзывы автора о звучании УМЗЧ на TDA7294, собранного по схеме источника тока, управляемого напряжением (ИТУН), меня заинтриговали. В результате мной был собран УМЗЧ по следующей схеме.

Схема работает следующим образом. Сигнал со входа IN поступает через проходной конденсатор C1 на низкоомное плечо обратной связи R1 R3, которое вместе с конденсатором C2 образует ФНЧ, препятствующий проникновению наводок и ВЧ шумов в звуковой тракт. Вместе с резистором R4, входная цепь создает первый сегмент ООС, Ку которого равен 2.34. Далее, если бы не токовый датчик R7, коэффициент усиления второй цепи задавался бы отношением R5/R6 и равнялся бы 45.5. Итоговый Ку был бы около 100. Однако, токовый датчик в схеме все-таки есть, и его сигнал суммируясь с падением напряжения на R6, создает частичную ООС по току. При наших номиналах схемы Ку =15.5.

Характеристики усилителя при работе на нагрузку 4 Ома:

– Рабочий диапазон частот (Гц) – 20-20000;

– Напряжение питания (В) – ±30;

– Номинальное входное напряжение (В) – 0.6;

– Номинальная выходная мощность (Вт) – 73;

– Входное сопротивление (кОм) – 9.4;

– THD при 60Вт, не более (%) – 0.01.

На печатной плате разведен параметрический стабилизатор на 12В, для питания сервисных цепей 9 и 10 TDA7294, представлен на рисунке.

В положении «Play!», усилитель находится в разблокированном состоянии и готов к работе ежесекундно. В положении «Mute» блокируются входные и выходные каскады микросхемы, а ее потребление снижается до минимальных дежурных токов. Емкости C11 C12 увеличены вдвое по сравнению со штатными для обеспечения большей задержки при включении и предотвращении щелчка в АС даже при длительном заряде конденсаторов блока питания.

Детали усилителя

Все резисторы, кроме R7 и R8, угольные или металлопленочные на 0.125–0.25Вт, типа С1-4, С2-23 или МЛТ–0.25. Резистор R7 – проволочный резистор на 5Вт. Рекомендуются белые SQP–резисторы в керамическом корпусе. R8 – резистор цепи Цобеля, угольный, проволочный или металлопленочный на 2Вт.

C1 – пленочный, максимально доступного качества, лавсановый или полипропиленовый. Удовлетворительный результат даст и К73–17 на 63В. C2 – керамический дисковый или любого другого типа, например К10–17Б. С3 – электролит максимально доступного качества на напряжение не менее 35 В, C4 C7, C8, C9 - пленочные типа К73–17 на 63 В. C5 C6 – электролитические на напряжение не менее 50 В. C11 C12 – любые электролитические на напряжение не менее 25 В. D1 – любой стабилитрон на 12…15 В мощностью не менее 0.5 Вт. Вместо микросхемы TDA7294 можно использовать TDA7296…7293. В случае использования TDA7296, TDA7295, TDA7293, необходимо откусить или отогнуть и не впаивать 5 ножку микросхемы.

Обе выходные клеммы усилителя «горячие», ни одна из них не заземлена, т.к. акустическая система также является звеном обратной связи. АС включается между и .

Ниже представлена компоновка платы с видами со стороны элементов и проводников, созданная с помощью программы Sprint-Layout_6.0.


Усилитель, сборку которого мы сегодня будем описывать, несмотря на относительную простоту, обеспечивает довольно высокие параметры. Конечно, у «микросхемных» приборов есть ряд ограничений, поэтому усилители на «рассыпухе» могут обеспечить более высокие показатели. В то же время, выбранная нами схема имеет ряд преимуществ:

  • она довольно простая;
  • стоит дешевле;
  • практически не нуждается в наладке;
  • быстро собирается (буквально за вечер);
  • по качеству превосходит многие усилители 70-х–80-х годов, и её вполне достаточно для большинства применений (да и современные системы до 300 долларов могут ей уступить);
  • такой вариант усилителя универсален (подходит и начинающему, и опытному радиолюбителю).
В любом случае, плохо сделанный и неправильно настроенный усилитель на «рассыпухе» будет звучать хуже микросхемного. А наша задача - сделать очень хороший прибор. Надо отметить, что звучание описываемого усилителя очень хорошее (если его правильно сделать и правильно питать). Есть информация, что какая-то фирма выпускала Hi-End усилители на микросхеме TDA7294. Поверьте, наш вариант будет ничуть не хуже!
  • Смотрите характеристики - какие устройства можно создать на её основе

Основные параметры усилителя Hi-Fi на микросхеме TDA7294

Сразу отметим, что микросхема устойчиво работала на активную нагрузку 2–24 Ома, на активное сопротивление 4 Ома, при ёмкостной нагрузке +/- 15 мкФ, а также при индуктивной нагрузке +/- 1,5 мГн. Причем на емкостной и индуктивной нагрузках искажения оставались малыми. Стоит сказать, что величина искажений сильно зависит от источника питания (особенно на емкостной нагрузке).

Непосредственно с результатами измерений вы можете ознакомиться в приведённой ниже таблице:

Параметр Значение Условия измерения
Рвых.макс, Вт (долговременная синусоидальная) 36 Напряжение питания +- 22В, Rн = 4 Ома
Диапазон частот по уровню -3 дБ 9 Гц–50 кГц Rн = 8 Ом, Uвых = 4 В
Кг, % (программой RMAA 5.5) 0,008 Rн = 8 Ом, Рвых = 16 Вт, f = 1 кГц
Чувствительность, В 0,5 Рвых.макс = 50 Вт, Rн = 4 Ом, Uип = +/-27 В

Усилитель Hi-Fi на микросхеме TDA7294: схема и её описание

Подробная схема усилителя Hi-Fi на микросхеме TDA7294


Схема данного усилителя - это практически повторение схемы включения, предлагаемой производителем. И это неслучайно - уж кто лучше знает, как ее включать. И наверняка не будет никаких неожиданностей из-за нестандартного включения или режима работы.

Сразу отметим - никаких 80–ти ватт (и тем более 100 Вт) от нее не получишь. Реально 40–60, но зато это будут честные долговременные ватты. В кратковременном импульсе можно получить гораздо больше, но это уже будет РМРО мощность, кстати, тоже честная (80–120 Вт). В «китайских» ваттах это будет несколько тысяч. Если кого интересует - тысяч пять. Тут все сильно зависит от источника питания.

И не забывайте, что для стереоусилителя нужен вдвое более мощный блок питания (при расчете по предлагаемой программе все учитывается автоматически).

Важно!!! Обязательно должен быть предохранитель как минимум в первичной обмотке трансформатора! Помните, что высокое напряжение опасно для жизни, а короткое замыкание может привести к пожару! И ещё: в цепь «земли» предохранитель включать нельзя!


От импульсного источника схема тоже работает, но тут высокие требования предъявляются к самому источнику: малые пульсации, возможность отдавать ток до 10 ампер без проблем, сильных «просадок» и срывов генерации. Помните, что высокочастотные пульсации подавляются микросхемой гораздо хуже, поэтому уровень искажений может повыситься в 10–100 раз, хотя «на вид» там все в порядке. Хороший импульсный источник, пригодный для Hi-Fi аудио, это сложное и недешевое устройство, поэтому изготовить «старомодный» аналоговый блок питания будет зачастую проще и дешевле.

Печатная плата и сборка усилителя на микросхеме TDA7294

Печатная плата односторонняя и имеет размеры 65х70 мм:



Плата разведена с учетом всех требований, предъявляемых к разводке высококачественных усилителей. Вход разведен максимально далеко от выхода, и заключен в «экран» из разделенной земли - входной и выходной. Дорожки питания обеспечивают максимальную эффективность фильтрующих конденсаторов (при этом длинна выводов конденсаторов С10 и С12 должна быть минимальна). В данной экспериментальной плате мы установили клемники для подключения входа, выхода и питания. Место под них предусмотрено (может несколько мешать конденсатор С10), но для стационарных конструкций лучше все эти провода припаять, ведь так надёжнее.

Широкие дорожки кроме низкого сопротивления обладают еще тем преимуществом, что труднее отслаиваются при перегреве. Да и при изготовлении «лазерно-утюжным» методом если где и не «пропечатается» квадрат 1х1 мм, то не страшно. Всё равно проводник не оборвётся. Кроме того, широкий проводник лучше держит тяжелые детали (а тонкий может просто отклеиться от платы).

На плате всего одна перемычка. Она лежит под выводами микросхемы, поэтому ее нужно монтировать первой, а под выводами оставить достаточно места, чтобы не замкнуло.

При монтаже применялись такие важные компоненты:

  • резисторы мощностью 0,12 Вт (кроме R9);
  • конденсаторы С9, С10, С12 К73-17 63В;
  • конденсаторы С4 К10-47в 6,8 мкФ 25В.
Использование дорогих «аудиофильских» деталей мы считаем неоправданным экономически, а дешевые «керамические» элементы дадут худший звук (хотя можно применять и их, только помните, что некоторые из них выдерживают напряжение не более 16 Вольт и в качестве С7 их использовать нельзя).

Электролиты подойдут любые современные. На плате нанесена полярность подключения всех электролитических конденсаторов и диода. Диод - любой маломощный выпрямительный, выдерживающий обратное напряжение не менее 50 Вольт (например 1N4001-1N4007). Высокочастотные диоды лучше не задействовать.

В углах платы предусмотрено место для отверстий крепежных винтов М3. Можно крепить плату только за корпус микросхемы, но все же надежнее ещё и прихватить винтами.

Микросхему обязательно установить на радиатор площадью не менее 350 см2. Лучше больше. В принципе в неё встроена тепловая защита, но судьбу лучше не искушать. Даже если предполагается активное охлаждение, все равно радиатор должен быть достаточно массивным: при импульсном тепловыделении, что характерно для музыки, тепло более эффективно отбирается теплоёмкостью радиатора (то есть большая холодная железка), нежели рассеиванием в окружающую среду.

Металлический корпус микросхемы соединен с «минусом» питания. Отсюда возникают два способа установки её на радиатор:

  1. Через изолирующую прокладку. При этом радиатор может быть электрически соединен с корпусом.
  2. Напрямую, при этом радиатор обязательно электрически изолирован от корпуса.
Первый вариант рекомендуется в том случае, если вы собираетесь ронять в корпус металлические предметы (скрепки, монеты, отвертки), чтобы не было замыкания. При этом прокладка должна быть по возможности тоньше, а радиатор - больше.

Второй вариант обеспечивает лучшее охлаждение, но требует аккуратности (например, нельзя демонтировать микросхему при включенном питании).

В обоих случаях нужно использовать теплопроводящую пасту, причем в 1-м варианте она должна быть нанесена как между корпусом микросхемы и прокладкой, так и между прокладкой и радиатором.

Печатную плату в формате Sprint-Layout 4.0, схему в формате pdf и расположение деталей на плате в формате gif вы найдете в архиве ниже:

Отладка усилителя Hi-Fi на микросхеме TDA7294

Как показывает практика, 90 % всех проблем с аппаратурой составляет её «неналаженность». То есть, спаяв очередную схему, и не сумев ее наладить, радиолюбитель ставит на ней крест, и во всеуслышание объявляет схему плохой. Поэтому наладка - это самый важный (и зачастую самый сложный) этап создания электронного устройства.

Правильно собранный усилитель в налаживании не нуждается. Но, поскольку никто не гарантирует, что все детали абсолютно исправны, при первом включении нужно соблюдать осторожность.

Первое включение проводится без нагрузки и с отключенным источником входного сигнала (лучше вообще закоротить вход перемычкой). Хорошо бы в цепь питания (и в «плюс», и в «минус» между источником питания и самим усилителем) включить предохранители порядка 1А. Кратковременно (примерно 0,5 сек.) подаем напряжение питания и убеждаемся, что ток, потребляемый от источника, небольшой (предохранители не сгорают). Удобно, если в источнике есть светодиодные индикаторы. При отключении от сети светодиоды продолжают гореть не менее 20 секунд: конденсаторы фильтра долго разряжаются маленьким током покоя микросхемы.

Если потребляемый микросхемой ток большой (больше 300 мА), то причин может быть много:

  • КЗ в монтаже;
  • плохой контакт в «земляном» проводе от источника;
  • перепутаны «плюс» и «минус»;
  • выводы микросхемы касаются перемычки;
  • неисправна микросхема;
  • неправильно впаяны конденсаторы С11, С13;
  • неисправны конденсаторы С10-С13.
Убедившись, что с током покоя все в порядке, смело включаем питание и измеряем постоянное напряжение на выходе. Его величина не должна превышать +/- 0,05 В. Большое напряжение говорит о проблемах с С3 (реже с С4) или с микросхемой. Бывали случаи, когда «межземельный» резистор либо был плохо пропаян, либо вместо 3 Ом имел сопротивление 3 кОм. При этом на выходе была постоянка в 10–20 Вольт. Подключив к выходу вольтметр переменного тока, убеждаемся, что переменное напряжение на выходе равно нулю (это лучше всего делать с замкнутым входом или просто с неподключенным входным кабелем, иначе на выходе будут помехи).

Наличие на выходе переменного напряжения говорит о проблемах с микросхемой или цепями С7R9, С3R3R4, R10. К сожалению, зачастую обычные тестеры не могут измерить высокочастотное напряжение, которое появляется при самовозбуждении (до 100 кГц), поэтому лучше всего здесь использовать осциллограф.

Если и тут всё в порядке, подключаем нагрузку, ещё раз проверяем на отсутствие возбуждения уже с нагрузкой и всё - можно слушать!

Но лучше все же провести еще один тест. Дело в том, что самым мерзким видом возбуждения усилителя является «звон» (когда возбуждение появляется только при наличии сигнала, причем при его определенной амплитуде). Главная проблема в том, что его трудно обнаружить без осциллографа и звукового генератора (да и устранить непросто), а звук портится колоссально из-за огромных интермодуляционных искажений. На слух это обычно воспринимается как «тяжелый» звук, то есть без всяких дополнительных призвуков (так как частота очень высокая), поэтому слушатель и не знает, что у него усилитель возбуждается. Просто послушает и решит, что микросхема «плохая», и «не звучит». При правильной сборке усилителя и нормальном источнике питания такого быть не должно.


Графическое изображение «звона» усилителя


Однако иногда подобные искажения бывают, и цепь С7R9 как раз и борется с ними. Но в нормальной микросхеме все хорошо и при отсутствии С7R9. Нам попадались экземпляры микросхемы со звоном. В них проблема решалась введением цепи С7R9 (поэтому мы её и применяем, хоть в даташите её и нет). Если подобная гадость имеет место даже при наличии С7R9, то можно попробовать ее устранить, «поиграв» с сопротивлением (его можно уменьшить до 3 Ом), но мы бы не советовали использовать такую микросхему. Это однозначно какой-то брак, и кто его знает, что в ней еще вылезет.

Как мы отмечали выше, «звон» можно увидеть только на осциллографе, а это оборудование есть далеко не у всех радиолюбителей. Хотя если хотите хорошо заниматься радиоэлектроникой, постарайтесь такие приборы заиметь или хотя бы где-то ими пользоваться. Чтобы всегда получать качественный звук, нужно обязательно проверяться на приборах. Помните, «звон» - это коварнейшая вещь, которая может испортить звучание тысячей способов.

Просмотреть ещё один метод сборки усилителя Hi-Fi на микросхеме TDA7294 вы можете в приведённом ниже видео:

Довольно простая, Повторить ее сможет даже человек, не очень сильный в электротехнике. УНЧ на этой микросхеме будет идеальным для использования в составе акустической системы для домашнего компьютера, телевизора, кинотеатра. Преимущество его в том, что не требуется тонкая наладка и настройка, как в случае с транзисторными усилителями. А уж что говорить про отличие от ламповых конструкций - габариты намного меньше.

Не требуется высокого напряжения для питания анодных цепей. Конечно, присутствует нагрев, как и в ламповых конструкциях. Поэтому в том случае, если планируется использование усилителя на протяжении долгого времени, лучше всего установить кроме алюминиевого радиатора еще и хотя бы небольшой вентилятор для осуществления принудительного обдува. Без него на микросборке TDA7294 схема усилителя будет работать, но велика вероятность перехода в защиту по температуре.

Почему TDA7294?

Эта микросхема пользуется большой популярностью уже более 20 лет. Она завоевала доверие у радиолюбителей, так как у нее очень высокие характеристики, усилители на ее основе простые, повторить конструкцию сможет любой, даже начинающий радиолюбитель. Усилитель на микросхеме TDA7294 (схема приведена в статье) может быть как монофоническим, так и стереофоническим. Внутреннее устройство микросхемы состоит из Усилитель звуковой частоты, построенный на этой микросхеме, относится к классу АВ.

Достоинства микросхемы

Преимущества использования микросхемы для :

1. Очень большая мощность на выходе. Порядка 70 Вт, если нагрузка имеет сопротивление 4 Ом. В данном случае применяется обычная схема включения микросхемы.

2. Около 120 Вт при нагрузке 8 Ом (в мостовой схеме).

3. Очень низкий уровень посторонних шумов, искажения несущественные, воспроизводимые частоты лежат в диапазоне, полностью воспринимаемом человеческим ухом — от 20 Гц до 20 кГц.

4. Питание микросхемы может производиться от источника постоянного напряжения 10-40 В. Но есть небольшой недостаток — необходимо использовать двухполярный источник питания.

Стоит обратить внимание на одну особенность — коэффициент искажений при этом не превышает 1 %. На микросборке TDA7294 схема усилителя мощности настолько простая, что даже удивительно, как она позволяет получить такое качественное звучание.

Назначение выводов микросхемы

А теперь более подробно о том, какие выводы имеются у TDA7294. Первая ножка — это «сигнальная земля», соединяется с общим проводом всей конструкции. Выводы «2» и «3» — инвертирующий и неинвертирующий входы соответственно. «4» вывод также является «сигнальной землей», соединенной с общим проводом. Пятая ножка в усилителях звуковой частоты не используется. «6» ножка - это вольт-добавка, к ней подключается электролитический конденсатор. «7» и «8» выводы — плюс и минус питания входных каскадов соответственно. Ножка «9» — режим ожидания, используется в блоке управления.

Аналогично: «10» ножка - режим приглушения, также применяется при конструировании усилителя. «11» и «12» выводы не используются в конструкции усилителей звуковой частоты. С «14» вывода снимается выходной сигнал и подается на акустическую систему. «13» и «15» выводы микросхемы — это «+» и «-» для подключения питания выходного каскада. На микросхеме TDA7294 схема ничем не отличается от предложенных в статье, дополняется она только который соединяется со входом.

Особенности микросборки

При конструировании усилителя звуковой частоты нужно обращать внимание на одну особенность — минус питания, а это ножки «15» и «8», электрически связаны с корпусом микросхемы. Поэтому необходимо изолировать его от радиатора, который в любом случае будет использоваться в усилителе. Для этой цели необходимо использовать специальную термопрокладку. Если используется мостовая схема усилителя на TDA7294, обращайте внимание на вариант исполнения корпуса. Он может быть вертикального или горизонтального типа. Наиболее распространенным является вариант исполнения, обозначаемый как TDA7294V.

Защитные функции микросхемы TDA7294

В микросхеме предусмотрено несколько видов защиты, в частности, от перепада питающего напряжения. Если вдруг изменится напряжение питания, то микросхема уйдет в режим защиты, следовательно, не будет электрического повреждения. Выходной каскад также имеет защиту от перегрузок и короткого замыкания. Если корпус прибора нагревается до температуры 145 градусов, отключается звук. При достижении 150 градусов происходит переход в режим ожидания. Все выводы микросхемы TDA7294 защищены от электростатики.

Усилитель мощности

Просто, доступно каждому, а самое главное — дешево. Буквально за несколько часов вы можете собрать очень хороший усилитель звуковой частоты. Причем большую часть времени вы потратите на то, чтобы осуществить травление платы. Структура всего усилителя состоит из блоков питания и управления, а также 2-х каналов УНЧ. Старайтесь как можно меньше проводов использовать в конструкции усилителя. Придерживайтесь простых рекомендаций:

1. Обязательное условие — это подключение источника питания проводами к каждой плате УЗЧ.

2. Свяжите питающие провода в жгут. С помощью этого получится немного компенсировать магнитное поле, которое создается электрическим током. Для этого необходимо взять все три питающих провода — «общий», «минус» и «плюс», с небольшим натяжением сплести их в одну косичку.

3. Ни в коем случае не используйте в конструкции так называемые «земляные петли». Это случай, когда общий провод, соединяющий все блоки конструкции, замыкается в петлю. Провод массы необходимо подводить последовательно, начиная от входных далее к плате УЗЧ, и заканчиваться должен на выходных разъемах. Крайне важно входные цепи подключать при помощи экранированных проводов в изоляции.

Блок управления режимами ожидания и приглушения

В этой микросхеме имеется и приглушения. Осуществлять управление функциями нужно при помощи выводов «9» и «10». Включение режима происходит в том случае, если на этих ножках микросхемы нет напряжения, либо оно менее полутора вольт. Чтобы включить режим, необходимо подать на ножки микросхемы напряжение, значение которого превосходит 3,5 В. Чтобы управление платами усилителя происходило одновременно, что актуально для схем, построенных по типу моста, собирается один блок управления для всех каскадов.

Когда усилитель включается, в блоке питания заряжаются все конденсаторы. В блоке управления также один конденсатор накапливает заряд. При накапливании максимально возможного заряда происходит отключение режима ожидания. Второй конденсатор, применяемый в блоке управления, отвечает за функционирование режима приглушения. Он заряжается немного позже, поэтому режим приглушения отключается вторым.

Обновлено: 27.04.2016

Отличный усилитель для дома можно собрать на микросхеме TDA7294. Если вы не сильны в электронике, то такой усилитель идеальный вариант, он не требует тонкой настройки и отладки как транзисторный усилитель и прост в построении в отличие от лампового усилителя.

Микросхема TDA7294 выпускается вот уже на протяжении 20 лет и до сих пор не потеряла своей актуальности, и по прежнему востребована в кругу радиолюбителей. Для начинающего радиолюбителя, эта статья станет хорошим подспорьем для знакомства с интегральными усилителями звуковой частоты.

В этой статье я постараюсь подробно расписать устройство усилителя на TDA7294. Основной акцент сделаю на стерео усилителе, собранном по обычной схеме (1 микросхема на канал) и вкратце расскажу про мостовую схему (2 микросхемы на канал).

Микросхема TDA7294 и ее особенности

TDA7294 – детище компании SGS-THOMSON Microelectronics, эта микросхема представляет собой усилитель низкой частоты AB класса, и построена на полевых транзисторах.

Из достоинств TDA7294 можно отметить следующее:

  • выходная мощность, при искажениях 0,3–0,8 %:
    • 70 Вт для нагрузки сопротивлением 4 Ом, обычная схема;
    • 120 Вт для нагрузки сопротивлением 8 Ом, мостовая схема;
  • функция приглушения (Mute) и функция режима ожидания (Stand-By);
  • низкий уровень шумов, малые искажения, диапазон частот 20–20000 Гц, широкий диапазон рабочих напряжений - ±10–40 В.

Технические характеристики

Технические характеристики микросхемы TDA7294
Параметр Условия Минимум Типовое Максимум Единицы
Напряжение питания ±10 ±40 В
Диапазон воспроизводимых частот Cигнал 3 db
Выходная мощность 1Вт
20-20000 Гц
Долговременная выходная мощность (RMS) коэф-т гармоник 0,5%:
Uп = ±35 В, Rн = 8 Ом
Uп = ±31 В, Rн = 6 Ом
Uп = ±27 В, Rн = 4 Ом

60
60
60

70
70
70
Вт
Пиковая музыкальная выходная мощность (RMS), длительность 1 сек. коэф-т гармоник 10%:
Uп = ±38 В, Rн = 8 Ом
Uп = ±33 В, Rн = 6 Ом
Uп = ±29 В, Rн = 4 Ом

100
100
100
Вт
Общие гармонические искажения Po = 5Вт; 1кГц
Po = 0,1–50Вт; 20–20000Гц
0,005 0,1 %
Uп = ±27 В, Rн = 4 Ом:
Po = 5Вт; 1кГц
Po = 0,1–50Вт; 20–20000Гц
0,01 0,1 %
Температура срабатывания защиты 145 °C
Ток в режиме покоя 20 30 60 мА
Входное сопротивление 100 кОм
Коэффициент усиления по напряжению 24 30 40 дБ
Пиковое значение выходного тока 10 А
Рабочий диапазон температур 0 70 °C
Термосопротивление корпуса 1,5 °C/Вт

Назначение выводов

Назначение выводов микросхемы TDA7294
Вывод микросхемы Обозначение Назначение Подключение
1 Stby-GND «Сигнальная земля» «Общий»
2 In- Инвертирующий вход Обратная связь
3 In+ Неинвертирующий вход Вход аудиосигнала через разделительный конденсатор
4 In+Mute «Сигнальная земля» «Общий»
5 N.C. Не используется
6 Bootstrap «Вольтодобавка» Конденсатор
7 +Vs Питание входного каскада (+)
8 -Vs Питания входного каскада (-)
9 Stby Режим ожидания Блок управления
10 Mute Режим приглушения
11 N.C. Не используется
12 N.C. Не используется
13 +PwVs Питания выходного каскада (+) Плюсовая клемма (+) блока питания
14 Out Выход Выход аудиосигнала
15 -PwVs Питания выходного каскада (-) Минусовая клемма (-) блока питания

Обратите внимание. Корпус микросхемы связан с минусом питания (выводы 8 и 15). Не забывайте про изоляцию радиатора от корпуса усилителя или изоляцию микросхемы от радиатора, установив ее через термопрокладку.

Также хочу заметить, что в моей схеме (как и в даташите) нет разделения входных и выходных «земель». Поэтому в описании и на схеме определения «общий», «земля», «корпус», GND следует воспринимать как понятия одного толка.

Отличие в корпусах

Микросхема TDA7294 выпускается двух видов – V (вертикальный) и HS (горизонтальный). TDA7294V, имея классическое вертикальное исполнение корпуса, первой сошла с конвейера и до настоящего времени является наиболее распространённой и доступной.

Комплекс защит

Микросхема TDA7294 имеет ряд защит:

  • защита от перепадов напряжения питания;
  • защита выходного каскада от короткого замыкания или перегрузки;
  • тепловая защита. При нагреве микросхемы до 145 °С включается режим приглушения (Mute), а при 150 °С включается режим ожидания (Stand-By);
  • защита выводов микросхемы от электростатических разрядов.

Усилитель мощности на TDA7294

Минимум деталей в обвязке, простая печатная плата, терпение и заведомо годные детали позволят вам без труда собрать недорогой УМЗЧ на TDA7294 с чистым звучанием и хорошей мощностью для домашнего использования.

Вы можете подключить данный усилитель непосредственно к линейному выходу звуковой карты компьютера, т.к. номинальное входное напряжение усилителя 700 мВ. А уровень номинального напряжения линейного выхода звуковой карты регламентируется в пределах 0,7–2 В.

Структурная схема усилителя

На схеме представлен вариант стерео усилителя. Структура усилителя по мостовой схеме аналогична – также две платы с TDA7294.

  • А0 . Блок питания
  • А1 . Блок управления режимами Mute и Stand-By
  • A2 . УМЗЧ (левый канал)
  • A3 . УМЗЧ (правый канал)

Обратите внимание на подключение блоков. Неправильная разводка проводов внутри усилителя может вызвать дополнительные помехи. Чтобы максимально минимизировать шумы следуйте нескольким правилам:

  1. Питание к каждой плате усилителя нужно подводить отдельным жгутом.
  2. Провода питания должны быть свиты в косичку (жгут). Это позволит компенсировать магнитные поля, создаваемые протекающим по проводникам током. Берем три провода («+», «-», «Общий») и плетем из них косичку с легким натягом.
  3. Избегайте «земляных петель». Это такая ситуация когда общий проводник, соединяя блоки, образует замкнутый контур (петлю). Подключение общего провода должно идти последовательно от входных разъемов к регулятору громкости, от него к плате УМЗЧ и дальше на выходные разъемы. Желательно использовать изолированные от корпуса разъемы. А для входных цепей также экранированные провода в изоляции.

Перечень деталей для БП TDA7294:

Приобретая трансформатор, обратите внимание, что на нем пишут действующее значение напряжения – U Д, и, замерив вольтметром вы также увидите действующее значение. На выходе после выпрямительного мостика конденсаторы заряжаются до амплитудного напряжения – U А. Амплитудное и действующее напряжения связаны следующей зависимостью:

U А = 1,41 × U Д

Согласно характеристикам TDA7294 для нагрузки сопротивлением 4 Ом оптимальное напряжение питания ±27 вольт (U А). Выходная мощность при таком напряжении будет 70 Вт. Это оптимальная мощность для TDA7294 – уровень искажений составит 0,3–0,8 %. Увеличивать питание для повышения мощности нет смысла т.к. уровень искажений растет лавинообразно (см. график).

Вычисляем необходимое напряжение каждой вторичной обмотки трансформатора:

U Д = 27 ÷ 1,41 ≈ 19 В

У меня трансформатор с двумя вторичными обмотками, с напряжением на каждой обмотке 20 вольт. Поэтому на схеме я обозначил клеммы питания как ± 28 В.

Для получения 70 Вт на канал, учитывая КПД микросхемы 66 %, считаем мощность трансформатора:

P = 70 ÷ 0,66 ≈ 106 ВА

Соответственно для двух TDA7294 это 212 ВА. Ближайший стандартный трансформатор, с запасом, будет на 250 ВА.

Здесь уместно заявить, что мощность трансформатора посчитана для чистого синусоидального сигнала, для реального музыкального звука возможны поправки. Так, Игорь Рогов утверждает , что для усилителя мощностью 50 Вт, достаточно будет трансформатора на 60 ВА.

Высоковольтная часть БП (до трансформатора) собирается на печатной плате 35×20 мм, можно и навесным монтажом:

Низковольтная часть (А0 по структурной схеме) собрана на печатной плате 115×45 мм:

Все платы усилителя доступны в одном .

Данный блок питания для TDA7294 рассчитан на две микросхемы. Для большего количества микросхем придется заменить диодный мост и увеличить емкость конденсаторов, что повлечет за собой изменение габаритов платы.

Блок управления режимами Mute и Stand-By

Микросхема TDA7294 обладает режимом ожидания (Stand-By) и режимом приглушения (Mute). Управление этими функциями происходит через выводы 9 и 10 соответственно. Режимы будут включены пока на этих выводах напряжение отсутствует или оно меньше +1,5 В. Чтобы «разбудить» микросхему достаточно подать на выводы 9 и 10 напряжение больше +3,5 В.

Для одновременного управления всеми платами УМЗЧ (особенно актуально для мостовых схем) и экономии радиодеталей есть резон собрать отдельный блок управления (А1 по структурной схеме):

Список деталей для блока управления:

  • Диод (VD1) . 1N4001 или аналогичный.
  • Конденсаторы (C1, C2) . Полярные электролитические, отечественные K50-35 или импортные, 47 мкФ 25 В.
  • Резисторы (R1–R4) . Обычные маломощные.

Печатная плата блока имеет размеры 35×32 мм:

Задача блока управления обеспечить бесшумное включение и отключение усилителя за счет режимов Stand-By и Mute.

Принцип работы следующий. При включении усилителя, вместе с конденсаторами блока питания, заряжается и конденсатор C2 блока управления. Как только он зарядится, режим Stand-By отключится. Чуть дольше заряжается конденсатор C1, поэтому режим Mute отключится во вторую очередь.

При отключении усилителя от сети первым разряжается конденсатор C1 через диод VD1 и включает режим Mute. Затем разряжается конденсатор C2 и устанавливает режим Stand-By. Микросхема замолкает, когда конденсаторы блока питания имеют заряд порядка 12 вольт, поэтому никаких щелчков и прочих звуков не слышно.

Усилитель на TDA7294 по обычной схеме

Схема включения микросхемы неинвертирующая, концепция соответствует оригинальной из даташита, только изменены номиналы компонентов для улучшения звуковых характеристик.

Список деталей:

  1. Конденсаторы:
    • C1 . Пленочный, 0,33–1 мкФ.
    • С2, С3 . Электролитические, 100–470 мкФ 50 В.
    • С4, С5 . Пленочные, 0,68 мкФ 63 В.
    • С6, С7 . Электролитические, 1000 мкФ 50 В.
  2. Резисторы:
    • R1 . Переменный сдвоенный с линейной характеристикой.
    • R2–R4 . Обычные маломощные.

Резистор R1 сдвоенный т.к. усилитель стерео. Сопротивление не более 50 кОм с линейной, а не логарифмической характеристикой для плавной регулировки громкости.

Цепь R2C1 представляет собой фильтр верхних частот (ФВЧ), подавляет частоты ниже 7 Гц, не пропуская их на вход усилителя. Резисторы R2 и R4 должны быть равны для обеспечения устойчивой работы усилителя.

Резисторы R3 и R4 организуют цепь отрицательной обратной связи (ООС) и задают коэффициент усиления:

Ку = R4 ÷ R3 = 22 ÷ 0,68 ≈ 32 дБ

Согласно даташиту коэффициент усиления должен лежать в пределах 24–40 дБ. Если меньше, то микросхема будет самовозбуждаться, если больше – вырастут искажения.

Конденсатор C2 участвует в цепи ООС, лучше взять с большей емкостью, чтобы снизить его влияние на низкие частоты. Конденсатор C3 обеспечивает увеличение напряжения питания выходных каскадов микросхемы – «вольтодобавка». Конденсаторы C4, C5 устраняют наводки вносимые проводами, а C6, C7 дополняют емкость фильтра блока питания. Все конденсаторы усилителя, кроме C1, должны быть с запасом по напряжению, поэтому берем на 50 В.

Печатная плата усилителя односторонняя, довольно компактная – 55×70 мм. При ее разработке стояла цель развести «землю» звездой, обеспечить универсальность и при этом сохранить минимальные габариты. Думаю это одна из самых маленьких плат для TDA7294. Данная плата рассчитана под установку одной микросхемы. Для стерео варианта, соответственно, понадобится две платы. Их можно установить рядом или одну над другой как у меня. Подробнее про универсальность расскажу чуть позже.

Радиатор, как видите, указан на одной плате, а вторая, аналогичная, крепится к нему сверху. Фотографии будут чуть дальше.

Усилитель на TDA7294 по мостовой схеме

Мостовая схема это сопряжение двух обычных усилителей с некоторыми поправками. Такое схемотехническое решение рассчитано для подключения акустики сопротивлением не 4, а 8 Ом! Акустика подключается между выходами усилителей.

Отличий от обычной схемы всего два:

  • входной конденсатор C1 второго усилителя подключается к «земле»;
  • добавлен резистор обратной связи (R5).

Печатная плата также представляет собой комбинацию из усилителей по обычной схеме. Размер платы – 110×70 мм.

Универсальная плата для TDA7294

Как вы уже заметили, вышеупомянутые платы по сути одинаковые. Следующий вариант печатной платы полностью подтверждает универсальность. На этой плате можно собрать стерео усилитель 2×70 Вт (обычная схема) или моно усилитель 1×120 Вт (мостовая). Размер платы – 110×70 мм.

Обратите внимание. Для использования этой платы в мостовом варианте, необходимо установить резистор R5, а перемычку S1 установить в горизонтальном положении. На рисунке эти элементы изображены пунктиром.

Для обычной схемы резистор R5 не нужен, а перемычку необходимо установить в вертикальном положении.

Сборка и наладка

Сборка усилителя не вызовет особых трудностей. Как таковой наладки усилитель не требует и заработает сразу при условии, что все собрано правильно и микросхема не бракованная.

Перед первым включением :

  1. Убедитесь в правильном монтаже радиодеталей.
  2. Проверьте правильность подключения проводов питания, не забывайте, что на моей плате усилителя «земля» находится не по центру между плюсом и минусом, а с краю.
  3. Убедитесь, что микросхемы изолированы от радиатора, если нет, то проверьте отсутствие контакта радиатора с «землей».
  4. Подавайте питание по очереди на каждый усилитель, так есть шанс не сжечь сразу все TDA7294.

Первое включение :

  1. Нагрузку (акустику) не подключаем.
  2. Входы усилителей замыкаем на «землю» (замкнуть X1 с X2 на плате усилителя).
  3. Подаем питание. Если с предохранителями в БП все нормально и ничего не задымилось, то запуск удался.
  4. Мультиметром проверяем отсутствие постоянного и переменного напряжения на выходе усилителя. Допускается незначительное постоянное напряжение, не более ±0,05 вольта.
  5. Отключаем питание и проверяем на нагрев корпус микросхемы. Будьте внимательны, конденсаторы в БП долго разряжаются.
  6. Через переменный резистор (R1 по схеме) подаем звуковой сигнал. Включаем усилитель. Звук должен появиться с небольшой задержкой, а при выключении сразу пропадать, это характеризует работу блока управления (A1).

Заключение

Надеюсь, данная статья поможет вам собрать качественный усилитель на TDA7294. Напоследок представляю несколько фотографий в процессе сборки, не обращайте внимания на качество исполнения платы, старый текстолит неравномерно протравился. По результатам сборки были сделаны некоторые правки, поэтому платы в файле.lay немного отличаются от плат на фотографиях.

Усилитель изготавливался для хорошего знакомого, он придумал и реализовал такой оригинальный корпус. Фотографии стерео усилителя на TDA7294 в сборе:

На заметку : Все печатные платы собраны в одном файле. Для переключения между "печатками" покликайте по вкладкам как показано на рисунке.

Список файлов