Дифференциал функции одной. Дифференциал функции




Понятие и геометрический смысл дифференциала

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.

Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной S, проведённой к графику этой функции в точке M(x; y), при изменении x (аргумента) на величину (см. рисунок).

Почему дифференциал можно использовать в приближенных вычислениях?

Дифференциал, является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. В этом можно убедиться, мысленно передвигая перпендикуляр, опущенный из точки P (см. рисунок) к оси Ox, ближе к началу координат. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.

О разных формах записи дифференциала

Дифференциал функции в точке x и обозначают

Следовательно,

, (2)

поскольку дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной.

Замечание. Нужно помнить, что если x – исходное значение аргумента, а - наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (1) этого не видно из записи.

Дифференциал функции можно записать в другой форме:

(4)

Свойства дифференциала

В этом и следующем параграфах каждую из функций будем считать дифференцируемой при всех рассматриваемых значениях её аргументов.

Дифференциал обладает свойствами, аналогичными свойствам производной:

(С – постоянная величина) (5)

(6)

(7)

(9)

Формулы (5) – (9) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .

Применение дифференциала в приближенных вычислениях

Установленное во втором параграфе приближенное равенство

позволяет использовать дифференциал для приближенных вычислений значений функции.

Запишем приближенное равенство более подробно. Так как

Абсолютная и относительная погрешности приближенных вычислений

Пользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.

Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением:

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:

Если точное число неизвестно, то

Иногда, прежде чем применить формулу (11), требуется предварительно преобразовать исходную величину. Как правило, это делается в двух целях. Во-первых, надо добиться, чтобы величина была достаточно малой по сравнению с , так как чем меньше , тем точнее результат приближенного вычисления. Во-вторых, желательно, чтобы величина вычислялась просто.


24. Приложение дифференциала функции к приближенным вычислениям

Применение дифференциала к приближенным вычислениям

Понятие дифференциала подсказывает, что если какой-Либо процесс по характеру своего изменения близок к линейному, то приращение функции мало отличается от дифференциала. Кроме того, если функция имеет конечную производную в некоторой точке х, то ее приращение и дифференциал также бесконечно малы при , стремящемся к нулю:

Так как дифференцируемая функция непрерывна,

Потому что произведение ограниченной функции на бесконечно малую при DX, стремящемся к нулю, есть функция бесконечно малая.

Более того, эти две бесконечно малые функции при эквивалентны:

Эквивалентность и дает возможность при малых приращениях аргумента приближенно считать

Что может дать эта формула? Пусть в некоторой точке сравнительно просто вычисляются значения и . Тогда в другой точке , отстоящей недалеко от , возможно представление:

Здесь остается открытым вопрос о точности получаемого результата. Это обстоятельство снижает ценность данной формулы приближенного вычисления, но в основном она полезна и широко применяется на практике.

Рассмотрим пример. В прямоугольном треугольнике катеты a=5 м и b=12 м. Какой будет гипотенуза этого треугольника, если катет a уменьшить на 0,2 м (рис. 11.5, a)?

Найдем первоначальную длину гипотенузы:

.

После уменьшения катета a на 0,2 м гипотенуза будет равна (рис. 11.5, a)

Применим теперь формулу (11.16) для приближенного нахождения с в связи с уменьшением катета a, рассматривая функцию вида:

(B=Const);

В обоих случаях мы получили приближенное значение искомой величины. Но в первом случае погрешность возникает в результате приближенных вычислений, а во втором, сравнительно более простом, – В связи с применением приближенной формулы (к ней также может добавиться погрешность, вызванная приближенными вычислениями). Отметим, что при уменьшении катета a На 0,2 м гипотенуза с уменьшилась примерно на 0,08 м, а полученные нами приближенные значения при этом отличаются лишь на 0,001 м.

Рассмотрим другую ситуацию: в этом же треугольнике уменьшим гипотенузу с на 0,2 м, оставив катет b без изменения (рис. 11.5, б). Определим, как в этом случае изменится катет A:

25.Приложение производной к исследованию функций и построению графика

Если на некотором промежутке график функции представляет собой непрерывную линию, иными словами, такую линию, которую можно провести без карандаша от листа бумаги, то такая функция называется непрерывной на этом промежутке. Существуют также функции, которые непрерывными не являются. В качестве примера рассмотрим график функции, которая на промежутках и [с; b] непрерывна, но в точке
х = с разрывна и поэтому на всем отрезке не является непрерывной. Все функции, изучаемые нами в школьном курсе математики, – это функции непрерывные на каждом промежутке, на котором они определены.

Отметим, что если на некотором промежутке функция имеет производную, то на этом промежутке она непрерывна.

Обратное утверждение является неверным. Функция, которая непрерывна на промежутке, может не иметь производной в некоторых точках этого промежутка. Например, функция
у = |log 2 x| непрерывна на промежутке х > 0, но в точке х = 1 не имеет производной, в силу того что в этой точке график функции касательной не имеет.

Рассмотрим построение графиков с помощью производной.

Построить график функции f(x) = x 3 – 2x 2 + x.

1) Эта функция определена при всех х € R.

2) Найдем промежутки монотонности рассматриваемой функции и ее точки экстремума с помощью производной. Производная равна f "(x) = 3x 2 – 4x + 1. Найдем стационарные точки:
3x 2 – 4x + 1 = 0, откуда х 1 = 1/3, х 2 = 1.

Для определения знака производной разложим квадратные трехчлен 3x 2 – 4x + 1 на множители:
f "(x) = 3(х – 1/3)(х – 1). Следовательно, на промежутках х < 1/3 и х > 1 производная положительна; значит, функция возрастает на этих промежутках.

Производная отрицательна при 1/3 < х < 1; следовательно, функция убывает на этом интервале.

Точка х 1 = 1/3 является точкой максимума, так как справа от этой точки функция убывает, а слева – возрастает. В этой точке значение функции равно f (1/3) = (1/3) 3 – 2(1/3) 2 + 1/3 = 4/27.

Точкой минимума является точка х 2 = 1, так как слева от этой точки функция убывает, а справа возрастает; ее значение в этой точке минимума равняется f (1) = 0.

3) При построение графика обычно находят точки пересечения графика с осями координат. Так как f(0) = 0, то график проходит через начало координат. Решая уравнение f(0) = 0, находим точки пересечения графика с осью абсцисс:

x 3 – 2x 2 + x = 0, х(x 2 – 2х + 1) = 0, х(х – 1) 2 = 0, откуда х = 0, х = 1.

4) Для более точного построение графика найдем значения функции еще в двух точках: f(-1/2) = -9/8, f(2) = 2.

5) Используя результаты исследования (пункты 1 – 4), строим график функции у = x 3 – 2x 2 + x.

Для построения графика функции обычно сначала исследуют свойства этой функции с помощью ее производной по схеме, аналогичной схеме при решении задачи 1.

Таким образом, при исследовании свойств функции необходимо найти:

1) область ее определения;

2) производную;

3) стационарные точки;

4) промежутки возрастания и убывания;

5) точки экстремума и значения функции в этих точках.

Результаты исследования удобно записывать в виде таблицы. Затем, используя таблицу, строят график функции. Для более точного построения графика обычно находят точки его пересечения с осями координат и – при необходимости – еще несколько точек графика.

Если же мы сталкиваемся с четной или нечетной функцией, то для построения ее графика достаточно исследовать свойства и построить ее график при х > 0, а затем отразить его симметрично относительно оси ординат (начала координат). Например, анализируя функцию f(x) = х + 4/х, мы приходим к выводу о том, что данная функция нечетная: f(-x) = -х + 4/(-х) = -(х + 4/х) = -f(x). Выполнив все пункты плана, строим график функции при х > 0, а график этой функции при х < 0 получаем посредством симметричного отражения графика при х > 0 относительно начала координат.

Для краткости решения задач на построение графиков функции большую часть рассуждений проводят устно.

Также отметим, что при решении некоторых задач мы можем столкнуться с необходимостью исследования функции не на всей области определения, а только на некотором промежутке, например, если нужно построить график, скажем, функции f(x) = 1 + 2x 2 – x 4 на отрезке [-1; 2].

26.Первообразная функции. Неопределенный интеграл и его свойства

Определение первообразной.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением, а f(x) – подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).

Действие нахождения неизвестной функции по заданному ее дифференциалу называетсянеопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

1.
Производная результата интегрирования равна подынтегральной функции.

2.
Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

3. , где k – произвольная константа.
Коэффициент можно выносить за знак неопределенного интеграла.

4.
Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.

Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

· первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;

· второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

Рассмотрим пример.

Найти первообразную функции , значение которой равно единице при х = 1.

Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом, . По второму свойству . То есть, имеем множество первообразных . При х = 1 получим значение . По условию, это значение должно быть равно единице, следовательно, С = 1. Искомая первообразная примет вид .

Если таблицу производных основных элементарных функций переписать в виде дифференциалов, то из нее по второму свойству неопределенного интеграла можно составить таблицу первообразных.


Похожая информация.


Как видим, для нахождения дифференциала нужно умножить производную на dx . Это позволяет из таблицы формул для производных сразу записать соответствующую таблицу для дифференциалов.

Полный дифференциал для функции двух переменных:

Полный дифференциал для функции трех переменных равен сумме частных дифференциалов: d f(x,y,z)=d x f(x,y,z)dx+d y f(x,y,z)dy+d z f(x,y,z)dz

Определение . Функция y=f(x) называется дифференцируемой в точке x 0 , если ее приращение в этой точке можно представить в виде ∆y=A∆x + α(∆x)∆x, где A – константа, а α(∆x) – бесконечно малая при ∆x → 0.
Требование дифференцируемости функции в точке эквивалентно существованию производной в этой точке, причем A=f’(x 0).

Пусть f(x) дифференцируема в точке x 0 и f "(x 0)≠0 , тогда ∆y=f’(x 0)∆x + α∆x, где α= α(∆x) →0 при ∆x→0. Величина ∆y и каждое слагаемое правой части являются бесконечно малыми величинами при ∆x→0. Сравним их: , то есть α(∆x)∆x – бесконечно малая более высокого порядка, чем f’(x 0)∆x.
, то есть ∆y~f’(x 0)∆x. Следовательно, f’(x 0)∆x представляет собой главную и вместе с тем линейную относительно ∆x часть приращения ∆y (линейная – значит содержащая ∆x в первой степени). Это слагаемое называют дифференциалом функции y=f(x) в точке x 0 и обозначают dy(x 0) или df(x 0). Итак, для произвольных значений x
dy=f′(x)∆x. (1)
Полагают dx=∆x, тогда
dy=f′(x)dx. (2)

Пример . Найти производные и дифференциалы данных функций.
а) y=4 tg2 x
Решение:

дифференциал:
б)
Решение:

дифференциал:
в) y=arcsin 2 (lnx)
Решение:

дифференциал:
г)
Решение:
=
дифференциал:

Пример . Для функции y=x 3 найти выражение для ∆y и dy при некоторых значениях x и ∆x.
Решение . ∆y = (x+∆x) 3 – x 3 = x 3 + 3x 2 ∆x +3x∆x 2 + ∆x 3 – x 3 = 3x 2 ∆x+3x∆x 2 +∆x 3 ; dy=3x 2 ∆x (взяли главную линейную относительно ∆x часть ∆y). В данном случае α(∆x)∆x = 3x∆x 2 + ∆x 3 .

ЛОГАРИФМИЧЕСКОЕ ДИФФЕРЕНЦИРОВАНИЕ

Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y " из уравнения y=f(x) , то можно:

Примеры.


ПОКАЗАТЕЛЬНО-СТЕПЕННАЯ ФУНКЦИЯ И ЕЕ ДИФФЕРЕНЦИРОВАНИЕ

Показательно-степенной функцией называется функция вида y = u v , где u=u(x), v=v(x) .

Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.

Примеры.


ТАБЛИЦА ПРОИЗВОДНЫХ

Объединим в одну таблицу все основные формулы и правили дифференцирования, выведенные ранее. Всюду будем полагать u=u(x) , v=v(x) , С=const. Для производных основных элементарных функций будем пользоваться теоремой о производной сложной функции.

Примеры.



ПОНЯТИЕ ДИФФЕРЕНЦИАЛА ФУНКЦИИ. СВЯЗЬ МЕЖДУ ДИФФЕРЕНЦИАЛОМ И ПРОИЗВОДНОЙ

Пусть функция y=f(x) дифференцируема на отрезке [a ; b ]. Производная этой функции в некоторой точке х 0 Î [a ; b ] определяется равенством

.

Следовательно, по свойству предела

Умножая все члены полученного равенства на Δx , получим:

Δy = f " (x 0)·Δx + a·Δx.

Итак, бесконечно малое приращение Δy дифференцируемой функции y=f(x) может быть представлено в виде суммы двух слагаемых, из которых первое есть (при f " (х 0) ≠ 0) главная часть приращения , линейная относительно Δx , а второе – бесконечно малая величина более высокого порядка, чем Δx . Главную часть приращения функции, т.е. f " (х 0)·Δx называют дифференциалом функции в точке х 0 и обозначают через dy .

Таким образом, если функция y=f(x) имеет производную f " (x ) в точке x , то произведение производной f " (x ) на приращение Δx аргумента называют дифференциалом функции и обозначают:


Найдем дифференциал функции y= x . В этом случае y " = (x )" = 1 и, следовательно, dy =dx x . Таким образом, дифференциал dx независимой переменной x совпадает с ее приращением Δx . Поэтому формулу (1) мы можем записать так:

dy = f "(x )dx

Но из этого соотношения следует, что . Следовательно, производную f "(x ) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Ранее мы показали, что из дифференцируемости функции в точке следует существование дифференциала в этой точке.

Справедливо и обратное утверждение.

Если для данного значения x приращение функции Δy = f (x x ) – f(x) можно представить в виде Δy = A ·Δx + α, где α – бесконечно малая величина, удовлетворяющая условию , т.е. если для функции y=f(x) существует дифференциал dy=A·dx в некоторой точке x , то эта функция имеет производную в точке x и f "(x )=А .

Действительно, имеем , и так как при Δx →0, то .

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

Примеры. Найти дифференциалы функций:


ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ДИФФЕРЕНЦИАЛА

Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox . Дадим независимой переменной x приращение Δx , тогда функция получит приращение Δy = NM 1 . Значениям x x и y y на кривой y = f(x) будет соответствовать точка

M 1 (x x ; y y ).

Из ΔMNT находим NT =MN ·tg α. Т.к. tg α = f "(x ), а MN = Δx , то NT = f "(x )·Δx . Но по определению дифференциала dy =f "(x )·Δx , поэтому dy = NT .

Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.


ТЕОРЕМА ОБ ИНВАРИАНТНОСТИ ДИФФЕРЕНЦИАЛА

Ранее мы видели, что если u является независимой переменной, то дифференциал функции y =f "(u ) имеет вид dy = f "(u )du .

Покажем, что эта форма сохраняется и в том случае, когда u является не независимой переменной, а функцией, т.е. найдем выражение для дифференциала сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)) . Тогда по правилу дифференцирования сложной функции:

.

Следовательно, по определению

Но g "(x )dx = du , поэтому dy= f"(u)du .

Мы доказали следующую теорему.

Теорема. Дифференциал сложной функции y=f(u) , для которой u=g(x) , имеет тот же вид dy=f"(u)du , какой он имел бы, если бы промежуточный аргумент u был независимой переменной.

Иначе говоря, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство дифференциала называется инвариантностью формы дифференциала .

Пример. . Найти dy .

Учитывая свойство инвариантности дифференциала, находим

.

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ

Пусть нам известно значение функции y 0 =f(x 0 ) и ее производной y 0 " = f "(x 0 ) в точке x 0 . Покажем, как найти значение функции в некоторой близкой точке x .

Как мы уже выяснили приращение функции Δy можно представить в виде суммы Δy =dy +α·Δx , т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy dy или Δy »f "(x 0 )·Δx .

Т.к., по определению, Δy = f (x ) – f (x 0 ), то f(x) – f(x 0) f "(x 0 )·Δx .

Примеры.

ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

Пусть функция y=f(x) дифференцируема на некотором отрезке [a ; b ]. Значение производной f "(x ), вообще говоря, зависит от x , т.е. производная f "(x ) представляет собой тоже функцию переменной x . Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y ""или f ""(x ). Итак, y "" = (y ")".

Например, если у = х 5 , то y "= 5x 4 , а y ""= 20x 4 .

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка или третьей производной и обозначается y"""или f"""(x ).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n – 1)-го порядка и обозначается символом y (n) или f (n) (x ): y (n) = (y (n-1))".

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

ЛЕКЦИЯ 10. ДИФФЕРЕНЦИАЛ ФУНКЦИИ. ТЕОРЕМЫ ФЕРМА, РОЛЛЯ, ЛАГРАНЖА И КОШИ.

1. Дифференциал функции

1.1. Определение дифференциала функции

С понятием производной теснейшим образом связано другое фундаментальное понятие математического анализа – дифференциал функции.

Определение 1. Функция y = f (x), определенная в некоторой окрестности точки x , называется дифференцируемой в точке x , если ее приращение в этой точке

y = f (x + x) − f (x)

имеет вид

y = A · x + α(Δx) · x,

где A – постоянная, а функция α(Δx) → 0 при x → 0.

Пусть y = f (x) – дифференцируемая функция, тогда дадим следующее определение.

Определение 2. Главная линейная

часть A · x

приращения

функции f (x)

называется дифференциалом функции в точке x и обозначается dy.

Таким образом,

y = dy + α(Δx) · x.

Замечание 1. Величина dy =

x называется

главной линейной частью

приращения y в связи с тем, что другая часть приращения α(Δx) ·

x при малых

x становится гораздо меньше A ·

Утверждение 1. Для того чтобы функция y = f (x) была дифференцируемой в точке x необходимо и достаточно, чтобы она имела в этой точке производную.

Доказательство. Необходимость. Пусть функция f (x) дифференцируема в точке

x + α(Δx) · x, при

x → 0. Тогда

A + lim α(Δx) = A.

Поэтому производная f ′ (x) существует и равна A.

Достаточность. Пусть существует

f ′ (x), т. е. существует предел lim

F ′ (x).

F ′ (x) + α(Δx),

y = f ′ (x)Δx + α(Δx) · x.

Последнее равенство означает дифференцируемость функции y = f (x).

1.2. Геометрический смысл дифференциала

Пусть l касательная к графику функции y = f (x) в точке M (x, f (x)) (рис. 1). Покажем, что dy величина отрезка P Q. Действительно,

dy = f ′ (x)Δx = tg α x =

" " l

"" " "

" α

Итак, дифференциал dy функции f (x) в точке x равен приращению ординаты касательной l в этой точке.

1.3. Инвариантность формы дифференциала

Если x независимая переменная, то

dy = f ′ (x)dx.

Допустим, что x = ϕ(t), где t независимая переменная, y = f (ϕ(t)). Тогда

dy = (f (ϕ(t))′ dt = f ′ (x)ϕ′ (t)dt = f ′ (x)dx (ϕ′ (t)dt = dx).

Итак, форма дифференциала не изменилась, несмотря на то, что x не является независимой переменной. Это свойство и называется инвариантностью формы дифференциала.

1.4. Применение дифференциала в приближенных вычислениях

Из формулы y = dy + α(Δx) · x, отбрасывая α(Δx) · x, видно, что при малых

y ≈ dy = f ′ (x)Δx.

Отсюда получим

f (x + x) − f (x) ≈ f ′ (x)Δx,

f (x + x) ≈ f (x) + f ′ (x)Δx. (1) Формула (1) и используется в приближенных вычислениях.

1.5. Дифференциалы высших порядков

По определению, вторым дифференциалом от функции y = f (x) в точке x называется дифференциал от первого дифференциала в этой точке, который обозначается

d2 y = d(dy).

Вычислим второй дифференциал:

d2 y = d(dy) = d(f ′ (x)dx) = (f ′ (x)dx)′ dx = (f ′′ (x)dx)dx = f ′′ (x)dx2

(при вычислении производной (f ′ (x)dx)′ учтено, что величина dx не зависит от x и, следовательно, при дифференцировании является постоянной).

Вообще, дифференциалом порядка n функции y = f (x) называется первый

дифференциал

от дифференциала

этой функции, который

обозначается через

dn y = d(dn−1 y)

dn y = f (n) (x)dxn .

Найти дифференциал функции y = arctg x .

Решение. dy = (arctg x)′ · dx =

1+x2

Найти дифференциалы первого и второго порядков функции v = e2t .

Решение. dv = 2e2t dt , d2 v = 4e2t dt2 .

Сравнить приращение и дифференциал функции y = 2x3 + 5x2 .

Решение. Находим

5x2 =

10x)Δx + (6x + 5)Δx

dy = (6x2 + 10x)dx.

Разность между приращением

y и дифференциалом dy есть бесконечно малая высшего

порядка по сравнению с

x , равная (6x + 5)Δx2 + 2Δx3 .

Пример 4. Вычислить приближенное значение площади круга, радиус которого равен 3, 02 м.

Решение. Воспользуемся формулой S = πr2 . Полагая r = 3 , r = 0, 02 , имеем

S ≈ dS = 2πr · r = 2π · 3 · 0, 02 = 0, 12π.

Следовательно, приближенное значение площади круга составляет 9π + 0, 12π = 9, 12π ≈

28, 66 (м 2 ).

Пример 5. Вычислить приближенное значение arcsin 0, 51 c точностью до 0,001. Решение. Рассмотрим функцию y = arcsin x . Полагая x = 0, 5 , x = 0, 01 и

применяя формулу (1)

x) ≈ arcsin x + (arcsin x)′ ·

(arcsin x)′

≈ arcsin 0, 5 +

0, 011 = 0, 513.

1 − (0, 5)2

Пример 6. Вычислить приближенно √ 3

c точностью до 0,0001.

Решение. Рассмотрим функцию y = √ 3

и положим x = 8,

x = 0, 01. Аналогично

по формуле (1)

(√ 3 x)′ =

√3

√ x + x ≈ √ 3 x + (√ 3 x)′ · x,

3√ 3 64

· 0, 01 = 2 + 3 · 4 · 0, 01 ≈ 2, 0008.

p 8, 01 ≈ √ 8 +

2. Теоремы Ферма, Ролля, Лагранжа и Коши

Определение 3. Говорят, что функция y = f (x) имеет (или достигает) в точке α локальный максимум (минимум), если найдется такая окрестность U (α) точки α, что для всех x U (α) :

f (α) ≥ f (x) (f (α) ≤ f (x)).

Локальный максимум и локальный минимум объединяются общим названием

локальный экстремум.

Функция, график которой изображен на рис. 4, имеет локальный максимум в точках β, β1 и локальный минимум в точках α, α1 .

Утверждение 2. (Ферма) Пусть функция y = f (x) дифференцируема в точке α и имеет в этой точке локальный экстремум. Тогда f ′ (α) = 0.

Идея доказательства теоремы Ферма следующая. Пусть для определенности f (x) имеет в точке α локальный минимум. По определению f ′ (α) есть предел при x → 0 отношения

f (α + x) − f (α)

Но при достаточно малых (по абсолютной величине) x

f (α + x) − f (α) ≥ 0.

Следовательно, при таких

x получаем

Отсюда и следует, что

f ′ (α) = lim g(Δx) = 0.

Проведите полное доказательство самостоятельно.

Утверждение 3. (Ролля)

Если y = f (x) непрерывна на

Дифференцируема на

(a, b) и f (a) = f (b), то существует такая точка α (a, b),

что f ′ (α) = 0.

Доказательство. По свойству функций, непрерывных на отрезке, найдутся такие точки x1 , x2 , что

экстремум. По условию теоремы f (x) дифференцируема в точке α. По теореме Ферма f ′ (α) = 0. Теорема доказана.

Теорема Ролля имеет простой геометрический смысл (рис. 5): если крайние ординаты кривой y = f (x) равны, то на кривой y = f (x) найдется точка, в которой касательная к кривой параллельна оси Ox.

Утверждение 4. (Коши) Пусть f (x), g(x) непрерывны на , дифференцируемы на (a, b) и g′ (x) =6 0 при любом x (a, b). Тогда найдется такая точка α (a, b), что

f ′ (α)

g′ (α)

Доказательство. Заметим, что g(a) =6 g(b). Действительно, в противном случае для функции g(x) были бы выполнены все условия теоремы Ролля. Следовательно, нашлась бы такая точка β (a, b), что g′ (β) = 0. Но это противоречит условию теоремы.

Рассмотрим следующую вспомогательную функцию:

F (x) = f (x) − f (a) − f (b) − f (a) (g(x) − g(a)). g(b) − g(a)

Функция F (x) непрерывна на ,

дифференцируема на (a, b). Кроме того, очевидно,

что′

F (a) = F (b) = 0. Поэтому по теореме Ролля найдется такая точка α (a, b), что

F (α) = 0, т. е.

f ′ (α)

g′ (α) = 0.

− g(b)

Отсюда следует

f ′ (α)

g′ (α)

Теорема доказана.

Утверждение 5. (Лагранжа) Если y = f (x) непрерывна на , дифференцируема на (a, b), то найдется такое α (a, b), что

F ′ (α).

Доказательство. Теорема Лагранжа прямо следует из теоремы Коши при g(x) =

Геометрически теорема Лагранжа означает, что на кривой y = f (x) между точками

A и B найдется такая точка C, касательная в которой параллельна хорде AB. y

Решение. Так как функция f (x) непрерывна и дифференцируема при всех

значениях x и ее значения на концах отрезка

Равны: f (1) = f (5)

теорема Ролля на этом отрезке

выполняется. Значение c

определяем

уравнения

f ′ (x) = 2x − 6 = 0, т. е. c = 3.

найти точку

M, в которой

Пример 8. На дуге

AB кривой y = 2x − x

касательная параллельна хорде

Решение. Функция y = 2x −x

непрерывна и дифференцируема при всех значениях

x. По теореме Лагранжа между двумя значениями a = 1,

b = 3 существует значение

x = c, удовлетворяющее равенству y(b) − y(a) = (b − a) ·y′ (c), где y′ = 2 − 2x. Подставив соответствующие значения, получим

y(3) − y(1) = (3 − 1) · y′ (c),

(2 · 3 − 32 ) − (2 · 1 − 12 ) = (3 − 1) · (2 − 2c),

отсюда c = 2, y(2) = 0.

Таким образом, точка M имеет координаты (2; 0).

Пример 9. На дуге AB кривой, заданной параметрическими уравнениями

x = t2 , y = t3 , найти точку

M, в которой касательная параллельна хорде AB, если

точкам A и B соответствуют значения t = 1 и t = 3.

Решение. Угловой коэффициент хорды AB равен

А угловой коэффициент

касательной в точке M (при

t = c) равен

y′

(c)/x′

x′ = 2t,

y′ = 3t2 . Для

определения c по теореме Коши получаем уравнение

yt ′ (c)

xt ′ (c)

т. е. c = 13/6.

Найденное значение c удовлетворяет неравенству 1 < c < 3. Подставив значение t = c в параметрические уравнения кривой, получаем x = 169/36, y = 2197/216. Итак искомая точка M (169/36; 2197/216).